Yifan Liu , Azell Francis , Catharina Hollauer , M. Cade Lawson , Omar Shaikh , Ashley Cotsman , Khushi Bhardwaj , Aline Banboukian , Mimi Li , Anne Webb , Omar Isaac Asensio
{"title":"电动汽车充电基础设施的可靠性:跨语言深度学习方法","authors":"Yifan Liu , Azell Francis , Catharina Hollauer , M. Cade Lawson , Omar Shaikh , Ashley Cotsman , Khushi Bhardwaj , Aline Banboukian , Mimi Li , Anne Webb , Omar Isaac Asensio","doi":"10.1016/j.commtr.2023.100095","DOIUrl":null,"url":null,"abstract":"<div><p>Vehicle electrification has emerged as a global strategy to address climate change and emissions externalities from the transportation sector. Deployment of charging infrastructure is needed to accelerate technology adoption; however, managers and policymakers have had limited evidence on the use of public charging stations due to poor data sharing and decentralized ownership across regions. In this article, we use machine learning based classifiers to reveal insights about consumer charging behavior in 72 detected languages including Chinese. We investigate 10 years of consumer reviews in East and Southeast Asia from 2011 to 2021 to enable infrastructure evaluation at a larger geographic scale than previously available. We find evidence that charging stations at government locations result in higher failure rates with consumers compared to charging stations at private points of interest. This evidence contrasts with predictions in the U.S. and European markets, where the performance is closer to parity. We also find that networked stations with communication protocols provide a relatively higher quality of charging services, which favors policy support for connectivity, particularly for underserved or remote areas.</p></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":null,"pages":null},"PeriodicalIF":12.5000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Reliability of electric vehicle charging infrastructure: A cross-lingual deep learning approach\",\"authors\":\"Yifan Liu , Azell Francis , Catharina Hollauer , M. Cade Lawson , Omar Shaikh , Ashley Cotsman , Khushi Bhardwaj , Aline Banboukian , Mimi Li , Anne Webb , Omar Isaac Asensio\",\"doi\":\"10.1016/j.commtr.2023.100095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vehicle electrification has emerged as a global strategy to address climate change and emissions externalities from the transportation sector. Deployment of charging infrastructure is needed to accelerate technology adoption; however, managers and policymakers have had limited evidence on the use of public charging stations due to poor data sharing and decentralized ownership across regions. In this article, we use machine learning based classifiers to reveal insights about consumer charging behavior in 72 detected languages including Chinese. We investigate 10 years of consumer reviews in East and Southeast Asia from 2011 to 2021 to enable infrastructure evaluation at a larger geographic scale than previously available. We find evidence that charging stations at government locations result in higher failure rates with consumers compared to charging stations at private points of interest. This evidence contrasts with predictions in the U.S. and European markets, where the performance is closer to parity. We also find that networked stations with communication protocols provide a relatively higher quality of charging services, which favors policy support for connectivity, particularly for underserved or remote areas.</p></div>\",\"PeriodicalId\":100292,\"journal\":{\"name\":\"Communications in Transportation Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Transportation Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772424723000069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424723000069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Reliability of electric vehicle charging infrastructure: A cross-lingual deep learning approach
Vehicle electrification has emerged as a global strategy to address climate change and emissions externalities from the transportation sector. Deployment of charging infrastructure is needed to accelerate technology adoption; however, managers and policymakers have had limited evidence on the use of public charging stations due to poor data sharing and decentralized ownership across regions. In this article, we use machine learning based classifiers to reveal insights about consumer charging behavior in 72 detected languages including Chinese. We investigate 10 years of consumer reviews in East and Southeast Asia from 2011 to 2021 to enable infrastructure evaluation at a larger geographic scale than previously available. We find evidence that charging stations at government locations result in higher failure rates with consumers compared to charging stations at private points of interest. This evidence contrasts with predictions in the U.S. and European markets, where the performance is closer to parity. We also find that networked stations with communication protocols provide a relatively higher quality of charging services, which favors policy support for connectivity, particularly for underserved or remote areas.