AGNP:全网短期概率流量速度预测与估算

IF 12.5 Q1 TRANSPORTATION
Meng Xu , Yining Di , Hongxing Ding , Zheng Zhu , Xiqun Chen , Hai Yang
{"title":"AGNP:全网短期概率流量速度预测与估算","authors":"Meng Xu ,&nbsp;Yining Di ,&nbsp;Hongxing Ding ,&nbsp;Zheng Zhu ,&nbsp;Xiqun Chen ,&nbsp;Hai Yang","doi":"10.1016/j.commtr.2023.100099","DOIUrl":null,"url":null,"abstract":"<div><p>The data-driven Intelligent Transportation System (<span>ITS</span>) provides great support to travel decisions and system management but inevitably encounters the issue of data missing in monitoring systems. Hence, network-wide traffic state prediction and imputation is critical to recognizing the system level state of a transportation network. Abundant research works have adopted various approaches for traffic prediction and imputation. However, previous methods ignore the reliability analysis of the predicted/imputed traffic information. Thus, this study originally proposes an attentive graph neural process (AGNP) method for network-level short-term traffic speed prediction and imputation, simultaneously considering reliability. Firstly, the Gaussian process (GP) is used to model the observed traffic speed state. Such a stochastic process is further learned by the proposed AGNP method, which is utilized for inferring the congestion state on the remaining unobserved road segments. Data from a transportation network in Anhui Province, China, is used to conduct three experiments with increasing missing data ratio for model testing. Based on comparisons against other machine learning models, the results show that the proposed AGNP model can impute traffic networks and predict traffic speed with high-level performance. With the probabilistic confidence provided by the AGNP, reliability analysis is conducted both numerically and visually to show that the predicted distributions are beneficial to guide traffic control strategies and travel plans.</p></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":null,"pages":null},"PeriodicalIF":12.5000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AGNP: Network-wide short-term probabilistic traffic speed prediction and imputation\",\"authors\":\"Meng Xu ,&nbsp;Yining Di ,&nbsp;Hongxing Ding ,&nbsp;Zheng Zhu ,&nbsp;Xiqun Chen ,&nbsp;Hai Yang\",\"doi\":\"10.1016/j.commtr.2023.100099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The data-driven Intelligent Transportation System (<span>ITS</span>) provides great support to travel decisions and system management but inevitably encounters the issue of data missing in monitoring systems. Hence, network-wide traffic state prediction and imputation is critical to recognizing the system level state of a transportation network. Abundant research works have adopted various approaches for traffic prediction and imputation. However, previous methods ignore the reliability analysis of the predicted/imputed traffic information. Thus, this study originally proposes an attentive graph neural process (AGNP) method for network-level short-term traffic speed prediction and imputation, simultaneously considering reliability. Firstly, the Gaussian process (GP) is used to model the observed traffic speed state. Such a stochastic process is further learned by the proposed AGNP method, which is utilized for inferring the congestion state on the remaining unobserved road segments. Data from a transportation network in Anhui Province, China, is used to conduct three experiments with increasing missing data ratio for model testing. Based on comparisons against other machine learning models, the results show that the proposed AGNP model can impute traffic networks and predict traffic speed with high-level performance. With the probabilistic confidence provided by the AGNP, reliability analysis is conducted both numerically and visually to show that the predicted distributions are beneficial to guide traffic control strategies and travel plans.</p></div>\",\"PeriodicalId\":100292,\"journal\":{\"name\":\"Communications in Transportation Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Transportation Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772424723000100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424723000100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 1

摘要

数据驱动的智能交通系统(ITS)为出行决策和系统管理提供了强大的支持,但不可避免地会遇到监控系统中数据丢失的问题。因此,全网交通状态预测和插补对于识别交通网络的系统级状态至关重要。大量的研究工作采用了各种方法进行交通预测和插补。然而,以前的方法忽略了预测/估算交通信息的可靠性分析。因此,本研究最初提出了一种关注图神经过程(AGNP)方法,用于网络级的短期交通速度预测和插补,同时考虑可靠性。首先,使用高斯过程(GP)对观测到的交通速度状态进行建模。通过所提出的AGNP方法进一步学习了这种随机过程,该方法用于推断剩余未观测路段的拥堵状态。使用来自中国安徽省交通网络的数据,进行了三个增加缺失数据率的实验,用于模型测试。通过与其他机器学习模型的比较,结果表明,所提出的AGNP模型能够以较高的性能估算交通网络并预测交通速度。利用AGNP提供的概率置信度,对可靠性进行了数值和可视化分析,表明预测的分布有利于指导交通控制策略和出行计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AGNP: Network-wide short-term probabilistic traffic speed prediction and imputation

The data-driven Intelligent Transportation System (ITS) provides great support to travel decisions and system management but inevitably encounters the issue of data missing in monitoring systems. Hence, network-wide traffic state prediction and imputation is critical to recognizing the system level state of a transportation network. Abundant research works have adopted various approaches for traffic prediction and imputation. However, previous methods ignore the reliability analysis of the predicted/imputed traffic information. Thus, this study originally proposes an attentive graph neural process (AGNP) method for network-level short-term traffic speed prediction and imputation, simultaneously considering reliability. Firstly, the Gaussian process (GP) is used to model the observed traffic speed state. Such a stochastic process is further learned by the proposed AGNP method, which is utilized for inferring the congestion state on the remaining unobserved road segments. Data from a transportation network in Anhui Province, China, is used to conduct three experiments with increasing missing data ratio for model testing. Based on comparisons against other machine learning models, the results show that the proposed AGNP model can impute traffic networks and predict traffic speed with high-level performance. With the probabilistic confidence provided by the AGNP, reliability analysis is conducted both numerically and visually to show that the predicted distributions are beneficial to guide traffic control strategies and travel plans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信