气候变化模式下墨西哥柑橘的未来空间分布

IF 3.1 3区 环境科学与生态学 Q2 ECOLOGY
Oliver Rodríguez-Aguilar , José López-Collado , Alejandra Soto-Estrada , Mónica de la Cruz Vargas-Mendoza , Clemente de Jesús García-Avila
{"title":"气候变化模式下墨西哥柑橘的未来空间分布","authors":"Oliver Rodríguez-Aguilar ,&nbsp;José López-Collado ,&nbsp;Alejandra Soto-Estrada ,&nbsp;Mónica de la Cruz Vargas-Mendoza ,&nbsp;Clemente de Jesús García-Avila","doi":"10.1016/j.ecocom.2023.101041","DOIUrl":null,"url":null,"abstract":"<div><p>Climate change may modify environmental conditions creating suitable environments for phytopathogen vectors in places that were not suitable before. The present study aimed to contrast current and future spatial distribution of <em>Diaphorina citri</em> in Mexico under two climate change scenarios, Shared Socioeconomic Pathways (SSP) 4.5 and 8.5 for years 2050 and 2070. Non-correlated bioclimatic variables from eight General Circulation Models derived from the Coupled Model Intercomparison Project-6 and presence point data were used to generate distribution models with MaxEnt. Future projections showed that current suitable areas, equivalent to a 38.6% of coverage persist across all scenarios, new suitability areas appear, and no reduction is expected. All the models coincide on a potential increase in relation to the current national distribution of 11.1, 14.8, 13.8 and 25.5% for SSP2 4.5–50 SSP2 4.5–70 SSP5 8.5–50, and SSP5 8.5–70 respectively. Most of the new areas are not currently dedicated to citriculture; however, an increase in the risk of Huanglongbing is expected because most of the new areas are contiguous to the current presence areas, and cover urban zones where there may exist rutaceous hosts, from which the vector may spread the disease to the production zones.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"53 ","pages":"Article 101041"},"PeriodicalIF":3.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Future spatial distribution of Diaphorina citri in Mexico under climate change models\",\"authors\":\"Oliver Rodríguez-Aguilar ,&nbsp;José López-Collado ,&nbsp;Alejandra Soto-Estrada ,&nbsp;Mónica de la Cruz Vargas-Mendoza ,&nbsp;Clemente de Jesús García-Avila\",\"doi\":\"10.1016/j.ecocom.2023.101041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Climate change may modify environmental conditions creating suitable environments for phytopathogen vectors in places that were not suitable before. The present study aimed to contrast current and future spatial distribution of <em>Diaphorina citri</em> in Mexico under two climate change scenarios, Shared Socioeconomic Pathways (SSP) 4.5 and 8.5 for years 2050 and 2070. Non-correlated bioclimatic variables from eight General Circulation Models derived from the Coupled Model Intercomparison Project-6 and presence point data were used to generate distribution models with MaxEnt. Future projections showed that current suitable areas, equivalent to a 38.6% of coverage persist across all scenarios, new suitability areas appear, and no reduction is expected. All the models coincide on a potential increase in relation to the current national distribution of 11.1, 14.8, 13.8 and 25.5% for SSP2 4.5–50 SSP2 4.5–70 SSP5 8.5–50, and SSP5 8.5–70 respectively. Most of the new areas are not currently dedicated to citriculture; however, an increase in the risk of Huanglongbing is expected because most of the new areas are contiguous to the current presence areas, and cover urban zones where there may exist rutaceous hosts, from which the vector may spread the disease to the production zones.</p></div>\",\"PeriodicalId\":50559,\"journal\":{\"name\":\"Ecological Complexity\",\"volume\":\"53 \",\"pages\":\"Article 101041\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Complexity\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476945X23000132\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X23000132","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

气候变化可能会改变环境条件,在以前不适合的地方为植物病原体媒介创造合适的环境。本研究旨在对比2050年和2070年在两种气候变化情景下,即共享社会经济路径(SSP)4.5和8.5下,墨西哥香茅的当前和未来空间分布。来自耦合模型相互比较项目-6的八个环流模型的非相关生物气候变量和存在点数据用于生成MaxEnt的分布模型。未来的预测显示,目前的适宜区域(相当于38.6%的覆盖率)在所有情况下都会持续存在,出现了新的适宜区域,预计不会减少。所有模型都一致认为,SSP2 4.5-50 SSP2 4.5-70 SSP5 8.5-50和SSP5 8.5-70的潜在增长率分别为11.1%、14.8%、13.8%和25.5%。大多数新的地区目前并没有专门用于柠檬种植;然而,黄龙病的风险预计会增加,因为大多数新的地区与目前存在的地区相邻,并且覆盖了可能存在车辙宿主的城市地区,媒介可能会从那里将疾病传播到生产区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Future spatial distribution of Diaphorina citri in Mexico under climate change models

Future spatial distribution of Diaphorina citri in Mexico under climate change models

Climate change may modify environmental conditions creating suitable environments for phytopathogen vectors in places that were not suitable before. The present study aimed to contrast current and future spatial distribution of Diaphorina citri in Mexico under two climate change scenarios, Shared Socioeconomic Pathways (SSP) 4.5 and 8.5 for years 2050 and 2070. Non-correlated bioclimatic variables from eight General Circulation Models derived from the Coupled Model Intercomparison Project-6 and presence point data were used to generate distribution models with MaxEnt. Future projections showed that current suitable areas, equivalent to a 38.6% of coverage persist across all scenarios, new suitability areas appear, and no reduction is expected. All the models coincide on a potential increase in relation to the current national distribution of 11.1, 14.8, 13.8 and 25.5% for SSP2 4.5–50 SSP2 4.5–70 SSP5 8.5–50, and SSP5 8.5–70 respectively. Most of the new areas are not currently dedicated to citriculture; however, an increase in the risk of Huanglongbing is expected because most of the new areas are contiguous to the current presence areas, and cover urban zones where there may exist rutaceous hosts, from which the vector may spread the disease to the production zones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Complexity
Ecological Complexity 环境科学-生态学
CiteScore
7.10
自引率
0.00%
发文量
24
审稿时长
3 months
期刊介绍: Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales. Ecological Complexity will publish research into the following areas: • All aspects of biocomplexity in the environment and theoretical ecology • Ecosystems and biospheres as complex adaptive systems • Self-organization of spatially extended ecosystems • Emergent properties and structures of complex ecosystems • Ecological pattern formation in space and time • The role of biophysical constraints and evolutionary attractors on species assemblages • Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory • Ecological topology and networks • Studies towards an ecology of complex systems • Complex systems approaches for the study of dynamic human-environment interactions • Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change • New tools and methods for studying ecological complexity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信