基于深度学习的脑缺血自动分割研究进展

Hossein Abbasi , Maysam Orouskhani , Samaneh Asgari , Sara Shomal Zadeh
{"title":"基于深度学习的脑缺血自动分割研究进展","authors":"Hossein Abbasi ,&nbsp;Maysam Orouskhani ,&nbsp;Samaneh Asgari ,&nbsp;Sara Shomal Zadeh","doi":"10.1016/j.neuri.2023.100145","DOIUrl":null,"url":null,"abstract":"<div><p>The accurate segmentation of brain stroke lesions in medical images are critical for early diagnosis, treatment planning, and monitoring of stroke patients. In recent years, deep learning-based approaches have shown great potential for brain stroke segmentation in both MRI and CT scans. However, it is not clear which modality is superior for this task. This paper provides a comprehensive review of recent advancements in the use of deep learning for stroke lesion segmentation in both MRI and CT scans. We compare the performance of various deep learning-based approaches and highlight the advantages and limitations of each modality. The deep learning models for ischemic segmentation task are evaluated using segmentation metrics including Dice, Jaccard, Sensitivity, and Specificity.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"3 4","pages":"Article 100145"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic brain ischemic stroke segmentation with deep learning: A review\",\"authors\":\"Hossein Abbasi ,&nbsp;Maysam Orouskhani ,&nbsp;Samaneh Asgari ,&nbsp;Sara Shomal Zadeh\",\"doi\":\"10.1016/j.neuri.2023.100145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The accurate segmentation of brain stroke lesions in medical images are critical for early diagnosis, treatment planning, and monitoring of stroke patients. In recent years, deep learning-based approaches have shown great potential for brain stroke segmentation in both MRI and CT scans. However, it is not clear which modality is superior for this task. This paper provides a comprehensive review of recent advancements in the use of deep learning for stroke lesion segmentation in both MRI and CT scans. We compare the performance of various deep learning-based approaches and highlight the advantages and limitations of each modality. The deep learning models for ischemic segmentation task are evaluated using segmentation metrics including Dice, Jaccard, Sensitivity, and Specificity.</p></div>\",\"PeriodicalId\":74295,\"journal\":{\"name\":\"Neuroscience informatics\",\"volume\":\"3 4\",\"pages\":\"Article 100145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772528623000304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528623000304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

医学图像中脑卒中病变的准确分割对于脑卒中患者的早期诊断、治疗计划和监测至关重要。近年来,基于深度学习的方法在MRI和CT扫描中都显示出了巨大的脑卒中分割潜力。然而,目前尚不清楚哪种模式更适合这项任务。本文全面回顾了在MRI和CT扫描中使用深度学习进行中风病变分割的最新进展。我们比较了各种基于深度学习的方法的性能,并强调了每种模式的优势和局限性。缺血分割任务的深度学习模型使用分割指标进行评估,包括Dice、Jaccard、Sensity和Specificity。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic brain ischemic stroke segmentation with deep learning: A review

The accurate segmentation of brain stroke lesions in medical images are critical for early diagnosis, treatment planning, and monitoring of stroke patients. In recent years, deep learning-based approaches have shown great potential for brain stroke segmentation in both MRI and CT scans. However, it is not clear which modality is superior for this task. This paper provides a comprehensive review of recent advancements in the use of deep learning for stroke lesion segmentation in both MRI and CT scans. We compare the performance of various deep learning-based approaches and highlight the advantages and limitations of each modality. The deep learning models for ischemic segmentation task are evaluated using segmentation metrics including Dice, Jaccard, Sensitivity, and Specificity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信