Mouna Benchekroun , Baptiste Chevallier , Vincent Zalc , Dan Istrate , Dominique Lenne , Nicolas Vera
{"title":"缺失数据对心率变异性特征的影响:动态健康监测插值方法的比较研究","authors":"Mouna Benchekroun , Baptiste Chevallier , Vincent Zalc , Dan Istrate , Dominique Lenne , Nicolas Vera","doi":"10.1016/j.irbm.2023.100776","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p><span>Heart rate variability (HRV) is a valuable indicator of both physiological and psychological states. However, the accuracy of HRV measurements taken by </span>wearable devices can be compromised by errors during transmission and acquisition. These errors can significantly affect HRV features and are not acceptable for precise HRV analysis used for medical diagnosis. This study aims to address this issue by investigating the effectiveness of four different interpolation methods (Nearest Neighbour - NN, Linear, Shape-preserving piecewise cubic Hermite - Pchip, and cubic spline) in tackling missing RR values in real-time HRV analysis.</p></div><div><h3>Materials and Methods</h3><p>In this study, HRV signals were obtained from Electrocardiograms (ECG) through automatic detection and manually corrected by a specialist, resulting in high-quality signals with no missing or ectopic peaks. To simulate low-quality data acquisition, values were iteratively deleted from each HRV analysis window. The deleted values were then replaced using four different interpolation methods. Time and frequency domain features were computed from both the original and reconstructed signals, and the Mean Absolute Percentage Error (MAPE) was used to compare these features.</p></div><div><h3>Results</h3><p>Results showed that as the percentage of missing values increased, some interpolation methods were more suitable for RR time-series with a greater number of missing data. Furthermore, the study suggests that the impact of interpolation on HRV features varied across different features and that SDNN is the least affected by interpolation. In the time domain, nearest neighbour interpolation gives the best results for up to 50% missing data. Beyond this threshold, it seems better not to use any interpolation for RMSSD. In the frequency domain however, the lowest errors of HRV feature estimation are obtained using linear or Pchip interpolation. To achieve maximum performance, it is recommended to adapt the interpolation method to both the percentage of missing values and the targeted HRV feature.</p></div><div><h3>Conclusion</h3><p>Results highlight the importance of choosing the appropriate interpolation method to accurately estimate HRV features in real-time analysis. Overall, the Pchip interpolation seems to yield the best results on most HRV features as it preserves the linear trend of the data while adding very light waves. The findings can be beneficial in the development of more precise and reliable wearable devices for real-time HRV monitoring.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"44 4","pages":"Article 100776"},"PeriodicalIF":5.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Impact of Missing Data on Heart Rate Variability Features: A Comparative Study of Interpolation Methods for Ambulatory Health Monitoring\",\"authors\":\"Mouna Benchekroun , Baptiste Chevallier , Vincent Zalc , Dan Istrate , Dominique Lenne , Nicolas Vera\",\"doi\":\"10.1016/j.irbm.2023.100776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><p><span>Heart rate variability (HRV) is a valuable indicator of both physiological and psychological states. However, the accuracy of HRV measurements taken by </span>wearable devices can be compromised by errors during transmission and acquisition. These errors can significantly affect HRV features and are not acceptable for precise HRV analysis used for medical diagnosis. This study aims to address this issue by investigating the effectiveness of four different interpolation methods (Nearest Neighbour - NN, Linear, Shape-preserving piecewise cubic Hermite - Pchip, and cubic spline) in tackling missing RR values in real-time HRV analysis.</p></div><div><h3>Materials and Methods</h3><p>In this study, HRV signals were obtained from Electrocardiograms (ECG) through automatic detection and manually corrected by a specialist, resulting in high-quality signals with no missing or ectopic peaks. To simulate low-quality data acquisition, values were iteratively deleted from each HRV analysis window. The deleted values were then replaced using four different interpolation methods. Time and frequency domain features were computed from both the original and reconstructed signals, and the Mean Absolute Percentage Error (MAPE) was used to compare these features.</p></div><div><h3>Results</h3><p>Results showed that as the percentage of missing values increased, some interpolation methods were more suitable for RR time-series with a greater number of missing data. Furthermore, the study suggests that the impact of interpolation on HRV features varied across different features and that SDNN is the least affected by interpolation. In the time domain, nearest neighbour interpolation gives the best results for up to 50% missing data. Beyond this threshold, it seems better not to use any interpolation for RMSSD. In the frequency domain however, the lowest errors of HRV feature estimation are obtained using linear or Pchip interpolation. To achieve maximum performance, it is recommended to adapt the interpolation method to both the percentage of missing values and the targeted HRV feature.</p></div><div><h3>Conclusion</h3><p>Results highlight the importance of choosing the appropriate interpolation method to accurately estimate HRV features in real-time analysis. Overall, the Pchip interpolation seems to yield the best results on most HRV features as it preserves the linear trend of the data while adding very light waves. The findings can be beneficial in the development of more precise and reliable wearable devices for real-time HRV monitoring.</p></div>\",\"PeriodicalId\":14605,\"journal\":{\"name\":\"Irbm\",\"volume\":\"44 4\",\"pages\":\"Article 100776\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irbm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1959031823000258\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irbm","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1959031823000258","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
The Impact of Missing Data on Heart Rate Variability Features: A Comparative Study of Interpolation Methods for Ambulatory Health Monitoring
Objectives
Heart rate variability (HRV) is a valuable indicator of both physiological and psychological states. However, the accuracy of HRV measurements taken by wearable devices can be compromised by errors during transmission and acquisition. These errors can significantly affect HRV features and are not acceptable for precise HRV analysis used for medical diagnosis. This study aims to address this issue by investigating the effectiveness of four different interpolation methods (Nearest Neighbour - NN, Linear, Shape-preserving piecewise cubic Hermite - Pchip, and cubic spline) in tackling missing RR values in real-time HRV analysis.
Materials and Methods
In this study, HRV signals were obtained from Electrocardiograms (ECG) through automatic detection and manually corrected by a specialist, resulting in high-quality signals with no missing or ectopic peaks. To simulate low-quality data acquisition, values were iteratively deleted from each HRV analysis window. The deleted values were then replaced using four different interpolation methods. Time and frequency domain features were computed from both the original and reconstructed signals, and the Mean Absolute Percentage Error (MAPE) was used to compare these features.
Results
Results showed that as the percentage of missing values increased, some interpolation methods were more suitable for RR time-series with a greater number of missing data. Furthermore, the study suggests that the impact of interpolation on HRV features varied across different features and that SDNN is the least affected by interpolation. In the time domain, nearest neighbour interpolation gives the best results for up to 50% missing data. Beyond this threshold, it seems better not to use any interpolation for RMSSD. In the frequency domain however, the lowest errors of HRV feature estimation are obtained using linear or Pchip interpolation. To achieve maximum performance, it is recommended to adapt the interpolation method to both the percentage of missing values and the targeted HRV feature.
Conclusion
Results highlight the importance of choosing the appropriate interpolation method to accurately estimate HRV features in real-time analysis. Overall, the Pchip interpolation seems to yield the best results on most HRV features as it preserves the linear trend of the data while adding very light waves. The findings can be beneficial in the development of more precise and reliable wearable devices for real-time HRV monitoring.
期刊介绍:
IRBM is the journal of the AGBM (Alliance for engineering in Biology an Medicine / Alliance pour le génie biologique et médical) and the SFGBM (BioMedical Engineering French Society / Société française de génie biologique médical) and the AFIB (French Association of Biomedical Engineers / Association française des ingénieurs biomédicaux).
As a vehicle of information and knowledge in the field of biomedical technologies, IRBM is devoted to fundamental as well as clinical research. Biomedical engineering and use of new technologies are the cornerstones of IRBM, providing authors and users with the latest information. Its six issues per year propose reviews (state-of-the-art and current knowledge), original articles directed at fundamental research and articles focusing on biomedical engineering. All articles are submitted to peer reviewers acting as guarantors for IRBM''s scientific and medical content. The field covered by IRBM includes all the discipline of Biomedical engineering. Thereby, the type of papers published include those that cover the technological and methodological development in:
-Physiological and Biological Signal processing (EEG, MEG, ECG…)-
Medical Image processing-
Biomechanics-
Biomaterials-
Medical Physics-
Biophysics-
Physiological and Biological Sensors-
Information technologies in healthcare-
Disability research-
Computational physiology-
…