{"title":"机器学习开发了一种用于预测卵巢癌症预后、生态系统和药物敏感性的程序化细胞死亡特征。","authors":"Le Wang, Xi Chen, Lei Song, Hua Zou","doi":"10.1155/2023/7365503","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ovarian cancer (OC) is the leading cause of gynecological cancer death and the fifth most common cause of cancer-related death in women in America. Programmed cell death played a vital role in tumor progression and immunotherapy response in cancer.</p><p><strong>Methods: </strong>The prognostic cell death signature (CDS) was constructed with an integrative machine learning procedure, including 10 methods, using TCGA, GSE14764, GSE26193, GSE26712, GSE63885, and GSE140082 datasets. Several methods and single-cell analysis were used to explore the correlation between CDS and the ecosystem and therapy response of OC patients.</p><p><strong>Results: </strong>The prognostic CDS constructed by the combination of StepCox (<i>n</i> = both) + Enet (alpha = 0.2) acted as an independent risk factor for the overall survival (OS) of OC patients and showed stable and powerful performance in predicting the OS rate of OC patients. Compared with tumor grade, clinical stage, and many developed signatures, the CDS had a higher C-index. OC patients with low CDS score had a higher level of CD8+ cytotoxic T, B cell, and M1-like macrophage, representing a related immunoactivated ecosystem. A low CDS score indicated a higher PD1 and CTLA4 immunophenoscore, higher tumor mutation burden score, lower tumor immune dysfunction and exclusion score, and lower tumor escape score in OC, demonstrating a better immunotherapy response. OC patients with high CDS score had a higher gene set score of cancer-related hallmarks, including angiogenesis, epithelial-mesenchymal transition, hypoxia, glycolysis, and notch signaling.</p><p><strong>Conclusion: </strong>The current study constructed a novel CDS for OC, which could serve as an indicator for predicting the prognosis, ecosystem, and immunotherapy benefits of OC patients.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":"2023 ","pages":"7365503"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586435/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Developed a Programmed Cell Death Signature for Predicting Prognosis, Ecosystem, and Drug Sensitivity in Ovarian Cancer.\",\"authors\":\"Le Wang, Xi Chen, Lei Song, Hua Zou\",\"doi\":\"10.1155/2023/7365503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Ovarian cancer (OC) is the leading cause of gynecological cancer death and the fifth most common cause of cancer-related death in women in America. Programmed cell death played a vital role in tumor progression and immunotherapy response in cancer.</p><p><strong>Methods: </strong>The prognostic cell death signature (CDS) was constructed with an integrative machine learning procedure, including 10 methods, using TCGA, GSE14764, GSE26193, GSE26712, GSE63885, and GSE140082 datasets. Several methods and single-cell analysis were used to explore the correlation between CDS and the ecosystem and therapy response of OC patients.</p><p><strong>Results: </strong>The prognostic CDS constructed by the combination of StepCox (<i>n</i> = both) + Enet (alpha = 0.2) acted as an independent risk factor for the overall survival (OS) of OC patients and showed stable and powerful performance in predicting the OS rate of OC patients. Compared with tumor grade, clinical stage, and many developed signatures, the CDS had a higher C-index. OC patients with low CDS score had a higher level of CD8+ cytotoxic T, B cell, and M1-like macrophage, representing a related immunoactivated ecosystem. A low CDS score indicated a higher PD1 and CTLA4 immunophenoscore, higher tumor mutation burden score, lower tumor immune dysfunction and exclusion score, and lower tumor escape score in OC, demonstrating a better immunotherapy response. OC patients with high CDS score had a higher gene set score of cancer-related hallmarks, including angiogenesis, epithelial-mesenchymal transition, hypoxia, glycolysis, and notch signaling.</p><p><strong>Conclusion: </strong>The current study constructed a novel CDS for OC, which could serve as an indicator for predicting the prognosis, ecosystem, and immunotherapy benefits of OC patients.</p>\",\"PeriodicalId\":49326,\"journal\":{\"name\":\"Analytical Cellular Pathology\",\"volume\":\"2023 \",\"pages\":\"7365503\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586435/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Cellular Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7365503\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Cellular Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/7365503","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Machine Learning Developed a Programmed Cell Death Signature for Predicting Prognosis, Ecosystem, and Drug Sensitivity in Ovarian Cancer.
Background: Ovarian cancer (OC) is the leading cause of gynecological cancer death and the fifth most common cause of cancer-related death in women in America. Programmed cell death played a vital role in tumor progression and immunotherapy response in cancer.
Methods: The prognostic cell death signature (CDS) was constructed with an integrative machine learning procedure, including 10 methods, using TCGA, GSE14764, GSE26193, GSE26712, GSE63885, and GSE140082 datasets. Several methods and single-cell analysis were used to explore the correlation between CDS and the ecosystem and therapy response of OC patients.
Results: The prognostic CDS constructed by the combination of StepCox (n = both) + Enet (alpha = 0.2) acted as an independent risk factor for the overall survival (OS) of OC patients and showed stable and powerful performance in predicting the OS rate of OC patients. Compared with tumor grade, clinical stage, and many developed signatures, the CDS had a higher C-index. OC patients with low CDS score had a higher level of CD8+ cytotoxic T, B cell, and M1-like macrophage, representing a related immunoactivated ecosystem. A low CDS score indicated a higher PD1 and CTLA4 immunophenoscore, higher tumor mutation burden score, lower tumor immune dysfunction and exclusion score, and lower tumor escape score in OC, demonstrating a better immunotherapy response. OC patients with high CDS score had a higher gene set score of cancer-related hallmarks, including angiogenesis, epithelial-mesenchymal transition, hypoxia, glycolysis, and notch signaling.
Conclusion: The current study constructed a novel CDS for OC, which could serve as an indicator for predicting the prognosis, ecosystem, and immunotherapy benefits of OC patients.
期刊介绍:
Analytical Cellular Pathology is a peer-reviewed, Open Access journal that provides a forum for scientists, medical practitioners and pathologists working in the area of cellular pathology. The journal publishes original research articles, review articles, and clinical studies related to cytology, carcinogenesis, cell receptors, biomarkers, diagnostic pathology, immunopathology, and hematology.