Yongfei Liu, Lin Chen, Pi Liu, Qianqian Yuan, Chengwei Ma, Wei Wang, Chijian Zhang, Hongwu Ma and AnPing Zeng*,
{"title":"大肠杆菌中合成异戊二醇途径的设计、评价和实施。","authors":"Yongfei Liu, Lin Chen, Pi Liu, Qianqian Yuan, Chengwei Ma, Wei Wang, Chijian Zhang, Hongwu Ma and AnPing Zeng*, ","doi":"10.1021/acssynbio.3c00394","DOIUrl":null,"url":null,"abstract":"<p >Isopentyldiol (IPDO) is an important raw material in the cosmetic industry. So far, IPDO is exclusively produced through chemical synthesis. Growing interest in natural personal care products has inspired the quest to develop a biobased process. We previously reported a biosynthetic route that produces IPDO via extending the leucine catabolism (route A), the efficiency of which, however, is not satisfactory. To address this issue, we computationally designed a novel non-natural IPDO synthesis pathway (route B) using RetroPath RL, the state-of-the-art tool for bioretrosynthesis based on artificial intelligence methods. We compared this new pathway with route A and two other intuitively designed routes for IPDO biosynthesis from various perspectives. Route B, which exhibits the highest thermodynamic driving force, least non-native reaction steps, and lowest energy requirements, appeared to hold the greatest potential for IPDO production. All three newly designed routes were then implemented in the <i>Escherichia coli</i> BL21(DE3) strain. Results show that the computationally designed route B can produce 2.2 mg/L IPDO from glucose but no IPDO production from routes C and D. These results highlight the importance and usefulness of in silico design and comprehensive evaluation of the potential efficiencies of candidate pathways in constructing novel non-natural pathways for the production of biochemicals.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"12 11","pages":"3381–3392"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Evaluation, and Implementation of Synthetic Isopentyldiol Pathways in Escherichia coli\",\"authors\":\"Yongfei Liu, Lin Chen, Pi Liu, Qianqian Yuan, Chengwei Ma, Wei Wang, Chijian Zhang, Hongwu Ma and AnPing Zeng*, \",\"doi\":\"10.1021/acssynbio.3c00394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Isopentyldiol (IPDO) is an important raw material in the cosmetic industry. So far, IPDO is exclusively produced through chemical synthesis. Growing interest in natural personal care products has inspired the quest to develop a biobased process. We previously reported a biosynthetic route that produces IPDO via extending the leucine catabolism (route A), the efficiency of which, however, is not satisfactory. To address this issue, we computationally designed a novel non-natural IPDO synthesis pathway (route B) using RetroPath RL, the state-of-the-art tool for bioretrosynthesis based on artificial intelligence methods. We compared this new pathway with route A and two other intuitively designed routes for IPDO biosynthesis from various perspectives. Route B, which exhibits the highest thermodynamic driving force, least non-native reaction steps, and lowest energy requirements, appeared to hold the greatest potential for IPDO production. All three newly designed routes were then implemented in the <i>Escherichia coli</i> BL21(DE3) strain. Results show that the computationally designed route B can produce 2.2 mg/L IPDO from glucose but no IPDO production from routes C and D. These results highlight the importance and usefulness of in silico design and comprehensive evaluation of the potential efficiencies of candidate pathways in constructing novel non-natural pathways for the production of biochemicals.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":\"12 11\",\"pages\":\"3381–3392\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssynbio.3c00394\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.3c00394","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Design, Evaluation, and Implementation of Synthetic Isopentyldiol Pathways in Escherichia coli
Isopentyldiol (IPDO) is an important raw material in the cosmetic industry. So far, IPDO is exclusively produced through chemical synthesis. Growing interest in natural personal care products has inspired the quest to develop a biobased process. We previously reported a biosynthetic route that produces IPDO via extending the leucine catabolism (route A), the efficiency of which, however, is not satisfactory. To address this issue, we computationally designed a novel non-natural IPDO synthesis pathway (route B) using RetroPath RL, the state-of-the-art tool for bioretrosynthesis based on artificial intelligence methods. We compared this new pathway with route A and two other intuitively designed routes for IPDO biosynthesis from various perspectives. Route B, which exhibits the highest thermodynamic driving force, least non-native reaction steps, and lowest energy requirements, appeared to hold the greatest potential for IPDO production. All three newly designed routes were then implemented in the Escherichia coli BL21(DE3) strain. Results show that the computationally designed route B can produce 2.2 mg/L IPDO from glucose but no IPDO production from routes C and D. These results highlight the importance and usefulness of in silico design and comprehensive evaluation of the potential efficiencies of candidate pathways in constructing novel non-natural pathways for the production of biochemicals.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.