Peiyao Wang, Quefeng Li, Dinggang Shen, Yufeng Liu
{"title":"异质亚群的高维因子回归。","authors":"Peiyao Wang, Quefeng Li, Dinggang Shen, Yufeng Liu","doi":"10.5705/ss.202020.0145","DOIUrl":null,"url":null,"abstract":"<p><p>In modern scientific research, data heterogeneity is commonly observed owing to the abundance of complex data. We propose a factor regression model for data with heterogeneous subpopulations. The proposed model can be represented as a decomposition of heterogeneous and homogeneous terms. The heterogeneous term is driven by latent factors in different subpopulations. The homogeneous term captures common variation in the covariates and shares common regression coefficients across subpopulations. Our proposed model attains a good balance between a global model and a group-specific model. The global model ignores the data heterogeneity, while the group-specific model fits each subgroup separately. We prove the estimation and prediction consistency for our proposed estimators, and show that it has better convergence rates than those of the group-specific and global models. We show that the extra cost of estimating latent factors is asymptotically negligible and the minimax rate is still attainable. We further demonstrate the robustness of our proposed method by studying its prediction error under a mis-specified group-specific model. Finally, we conduct simulation studies and analyze a data set from the Alzheimer's Disease Neuroimaging Initiative and an aggregated microarray data set to further demonstrate the competitiveness and interpretability of our proposed factor regression model.</p>","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"33 1","pages":"27-53"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583735/pdf/nihms-1892524.pdf","citationCount":"0","resultStr":"{\"title\":\"HIGH-DIMENSIONAL FACTOR REGRESSION FOR HETEROGENEOUS SUBPOPULATIONS.\",\"authors\":\"Peiyao Wang, Quefeng Li, Dinggang Shen, Yufeng Liu\",\"doi\":\"10.5705/ss.202020.0145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In modern scientific research, data heterogeneity is commonly observed owing to the abundance of complex data. We propose a factor regression model for data with heterogeneous subpopulations. The proposed model can be represented as a decomposition of heterogeneous and homogeneous terms. The heterogeneous term is driven by latent factors in different subpopulations. The homogeneous term captures common variation in the covariates and shares common regression coefficients across subpopulations. Our proposed model attains a good balance between a global model and a group-specific model. The global model ignores the data heterogeneity, while the group-specific model fits each subgroup separately. We prove the estimation and prediction consistency for our proposed estimators, and show that it has better convergence rates than those of the group-specific and global models. We show that the extra cost of estimating latent factors is asymptotically negligible and the minimax rate is still attainable. We further demonstrate the robustness of our proposed method by studying its prediction error under a mis-specified group-specific model. Finally, we conduct simulation studies and analyze a data set from the Alzheimer's Disease Neuroimaging Initiative and an aggregated microarray data set to further demonstrate the competitiveness and interpretability of our proposed factor regression model.</p>\",\"PeriodicalId\":49478,\"journal\":{\"name\":\"Statistica Sinica\",\"volume\":\"33 1\",\"pages\":\"27-53\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583735/pdf/nihms-1892524.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Sinica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202020.0145\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202020.0145","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
HIGH-DIMENSIONAL FACTOR REGRESSION FOR HETEROGENEOUS SUBPOPULATIONS.
In modern scientific research, data heterogeneity is commonly observed owing to the abundance of complex data. We propose a factor regression model for data with heterogeneous subpopulations. The proposed model can be represented as a decomposition of heterogeneous and homogeneous terms. The heterogeneous term is driven by latent factors in different subpopulations. The homogeneous term captures common variation in the covariates and shares common regression coefficients across subpopulations. Our proposed model attains a good balance between a global model and a group-specific model. The global model ignores the data heterogeneity, while the group-specific model fits each subgroup separately. We prove the estimation and prediction consistency for our proposed estimators, and show that it has better convergence rates than those of the group-specific and global models. We show that the extra cost of estimating latent factors is asymptotically negligible and the minimax rate is still attainable. We further demonstrate the robustness of our proposed method by studying its prediction error under a mis-specified group-specific model. Finally, we conduct simulation studies and analyze a data set from the Alzheimer's Disease Neuroimaging Initiative and an aggregated microarray data set to further demonstrate the competitiveness and interpretability of our proposed factor regression model.
期刊介绍:
Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.