Nikola A Mizgier, Charlie E Jones, Anthony V Furano
{"title":"不同L1反转录转座子盘绕线圈的共同表达可以导致它们的纠缠。","authors":"Nikola A Mizgier, Charlie E Jones, Anthony V Furano","doi":"10.1186/s13100-023-00303-8","DOIUrl":null,"url":null,"abstract":"<p><p>L1 (LINE1) non-LTR retrotransposons are ubiquitous genomic parasites and the dominant transposable element in humans having generated about 40% of their genomic DNA during their ~ 100 million years (Myr) of activity in primates. L1 replicates in germ line cells and early embryos, causing genetic diversity and defects, but can be active in some somatic stem cells, tumors and during aging. L1 encodes two proteins essential for retrotransposition: ORF2p, a reverse transcriptase that contains an endonuclease domain, and ORF1p, a coiled coil mediated homo trimer, which functions as a nucleic acid chaperone. Both proteins contain highly conserved domains and preferentially bind their encoding transcript to form an L1 ribonucleoprotein (RNP), which mediates retrotransposition. However, the coiled coil has periodically undergone episodes of substantial amino acid replacement to the extent that a given L1 family can concurrently express multiple ORF1s that differ in the sequence of their coiled coils. Here we show that such distinct ORF1p sequences can become entangled forming heterotrimers when co-expressed from separate vectors and speculate on how coiled coil entanglement could affect coiled coil evolution.</p>","PeriodicalId":18854,"journal":{"name":"Mobile DNA","volume":"14 1","pages":"16"},"PeriodicalIF":4.7000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10588031/pdf/","citationCount":"0","resultStr":"{\"title\":\"Co-expression of distinct L1 retrotransposon coiled coils can lead to their entanglement.\",\"authors\":\"Nikola A Mizgier, Charlie E Jones, Anthony V Furano\",\"doi\":\"10.1186/s13100-023-00303-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>L1 (LINE1) non-LTR retrotransposons are ubiquitous genomic parasites and the dominant transposable element in humans having generated about 40% of their genomic DNA during their ~ 100 million years (Myr) of activity in primates. L1 replicates in germ line cells and early embryos, causing genetic diversity and defects, but can be active in some somatic stem cells, tumors and during aging. L1 encodes two proteins essential for retrotransposition: ORF2p, a reverse transcriptase that contains an endonuclease domain, and ORF1p, a coiled coil mediated homo trimer, which functions as a nucleic acid chaperone. Both proteins contain highly conserved domains and preferentially bind their encoding transcript to form an L1 ribonucleoprotein (RNP), which mediates retrotransposition. However, the coiled coil has periodically undergone episodes of substantial amino acid replacement to the extent that a given L1 family can concurrently express multiple ORF1s that differ in the sequence of their coiled coils. Here we show that such distinct ORF1p sequences can become entangled forming heterotrimers when co-expressed from separate vectors and speculate on how coiled coil entanglement could affect coiled coil evolution.</p>\",\"PeriodicalId\":18854,\"journal\":{\"name\":\"Mobile DNA\",\"volume\":\"14 1\",\"pages\":\"16\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10588031/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mobile DNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13100-023-00303-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile DNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13100-023-00303-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Co-expression of distinct L1 retrotransposon coiled coils can lead to their entanglement.
L1 (LINE1) non-LTR retrotransposons are ubiquitous genomic parasites and the dominant transposable element in humans having generated about 40% of their genomic DNA during their ~ 100 million years (Myr) of activity in primates. L1 replicates in germ line cells and early embryos, causing genetic diversity and defects, but can be active in some somatic stem cells, tumors and during aging. L1 encodes two proteins essential for retrotransposition: ORF2p, a reverse transcriptase that contains an endonuclease domain, and ORF1p, a coiled coil mediated homo trimer, which functions as a nucleic acid chaperone. Both proteins contain highly conserved domains and preferentially bind their encoding transcript to form an L1 ribonucleoprotein (RNP), which mediates retrotransposition. However, the coiled coil has periodically undergone episodes of substantial amino acid replacement to the extent that a given L1 family can concurrently express multiple ORF1s that differ in the sequence of their coiled coils. Here we show that such distinct ORF1p sequences can become entangled forming heterotrimers when co-expressed from separate vectors and speculate on how coiled coil entanglement could affect coiled coil evolution.
期刊介绍:
Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements in all organisms, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution. In addition, the journal will consider articles on the utility of mobile genetic elements in biotechnological methods and protocols.