微小核糖核酸在神经退行性疾病诊断和治疗中的作用最新进展。

IF 3.8 4区 医学 Q2 GENETICS & HEREDITY
Ammara Saleem, Maira Javed, Muhammad Furqan Akhtar, Ali Sharif, Bushra Akhtar, Muhammad Naveed, Uzma Saleem, Mirza Muhammad Faran Ashraf Baig, Hafiz Muhammad Zubair, Talha Bin Emran, Mohammad Saleem, Ghulam Md Ashraf
{"title":"微小核糖核酸在神经退行性疾病诊断和治疗中的作用最新进展。","authors":"Ammara Saleem, Maira Javed, Muhammad Furqan Akhtar, Ali Sharif, Bushra Akhtar, Muhammad Naveed, Uzma Saleem, Mirza Muhammad Faran Ashraf Baig, Hafiz Muhammad Zubair, Talha Bin Emran, Mohammad Saleem, Ghulam Md Ashraf","doi":"10.2174/0115665232261931231006103234","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>MicroRNAs (miRNA) are small noncoding RNAs that play a significant role in the regulation of gene expression. The literature has explored the key involvement of miRNAs in the diagnosis, prognosis, and treatment of various neurodegenerative diseases (NDD), such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). The miRNA regulates various signalling pathways; its dysregulation is involved in the pathogenesis of NDD.</p><p><strong>Objective: </strong>The present review is focused on the involvement of miRNAs in the pathogenesis of NDD and their role in the treatment or management of NDD. The literature provides comprehensive and cutting-edge knowledge for students studying neurology, researchers, clinical psychologists, practitioners, pathologists, and drug development agencies to comprehend the role of miRNAs in the NDD's pathogenesis, regulation of various genes/signalling pathways, such as α-synuclein, P53, amyloid-β, high mobility group protein (HMGB1), and IL-1β, NMDA receptor signalling, cholinergic signalling, etc. Methods: The issues associated with using anti-miRNA therapy are also summarized in this review. The data for this literature were extracted and summarized using various search engines, such as Google Scholar, Pubmed, Scopus, and NCBI using different terms, such as NDD, PD, AD, HD, nanoformulations of mRNA, and role of miRNA in diagnosis and treatment.</p><p><strong>Results: </strong>The miRNAs control various biological actions, such as neuronal differentiation, synaptic plasticity, cytoprotection, neuroinflammation, oxidative stress, apoptosis and chaperone-mediated autophagy, and neurite growth in the central nervous system and diagnosis. Various miRNAs are involved in the regulation of protein aggregation in PD and modulating β-secretase activity in AD. In HD, mutation in the huntingtin (Htt) protein interferes with Ago1 and Ago2, thus affecting the miRNA biogenesis. Currently, many anti-sense technologies are in the research phase for either inhibiting or promoting the activity of miRNA.</p><p><strong>Conclusion: </strong>This review provides new therapeutic approaches and novel biomarkers for the diagnosis and prognosis of NDDs by using miRNA.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":"122-134"},"PeriodicalIF":3.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current Updates on the Role of MicroRNA in the Diagnosis and Treatment of Neurodegenerative Diseases.\",\"authors\":\"Ammara Saleem, Maira Javed, Muhammad Furqan Akhtar, Ali Sharif, Bushra Akhtar, Muhammad Naveed, Uzma Saleem, Mirza Muhammad Faran Ashraf Baig, Hafiz Muhammad Zubair, Talha Bin Emran, Mohammad Saleem, Ghulam Md Ashraf\",\"doi\":\"10.2174/0115665232261931231006103234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>MicroRNAs (miRNA) are small noncoding RNAs that play a significant role in the regulation of gene expression. The literature has explored the key involvement of miRNAs in the diagnosis, prognosis, and treatment of various neurodegenerative diseases (NDD), such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). The miRNA regulates various signalling pathways; its dysregulation is involved in the pathogenesis of NDD.</p><p><strong>Objective: </strong>The present review is focused on the involvement of miRNAs in the pathogenesis of NDD and their role in the treatment or management of NDD. The literature provides comprehensive and cutting-edge knowledge for students studying neurology, researchers, clinical psychologists, practitioners, pathologists, and drug development agencies to comprehend the role of miRNAs in the NDD's pathogenesis, regulation of various genes/signalling pathways, such as α-synuclein, P53, amyloid-β, high mobility group protein (HMGB1), and IL-1β, NMDA receptor signalling, cholinergic signalling, etc. Methods: The issues associated with using anti-miRNA therapy are also summarized in this review. The data for this literature were extracted and summarized using various search engines, such as Google Scholar, Pubmed, Scopus, and NCBI using different terms, such as NDD, PD, AD, HD, nanoformulations of mRNA, and role of miRNA in diagnosis and treatment.</p><p><strong>Results: </strong>The miRNAs control various biological actions, such as neuronal differentiation, synaptic plasticity, cytoprotection, neuroinflammation, oxidative stress, apoptosis and chaperone-mediated autophagy, and neurite growth in the central nervous system and diagnosis. Various miRNAs are involved in the regulation of protein aggregation in PD and modulating β-secretase activity in AD. In HD, mutation in the huntingtin (Htt) protein interferes with Ago1 and Ago2, thus affecting the miRNA biogenesis. Currently, many anti-sense technologies are in the research phase for either inhibiting or promoting the activity of miRNA.</p><p><strong>Conclusion: </strong>This review provides new therapeutic approaches and novel biomarkers for the diagnosis and prognosis of NDDs by using miRNA.</p>\",\"PeriodicalId\":10798,\"journal\":{\"name\":\"Current gene therapy\",\"volume\":\" \",\"pages\":\"122-134\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115665232261931231006103234\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665232261931231006103234","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

背景:微小RNA(miRNA)是一种小的非编码RNA,在基因表达调控中发挥重要作用。文献探讨了miRNA在各种神经退行性疾病(NDD)的诊断、预后和治疗中的关键作用,如阿尔茨海默病(AD)、帕金森病(PD)和亨廷顿舞蹈症(HD)。miRNA调节各种信号通路;其失调与NDD的发病机制有关。目的:综述miRNA在NDD发病机制中的作用及其在NDD治疗或管理中的作用。该文献为学习神经病学的学生、研究人员、临床心理学家、从业者、病理学家和药物开发机构提供了全面而前沿的知识,以理解miRNA在NDD发病机制中的作用,以及各种基因/信号通路的调节,如α-突触核蛋白、P53、淀粉样蛋白-β、高迁移率组蛋白(HMGB1)和IL-1β,NMDA受体信号传导、胆碱能信号传导等。方法:本文还综述了抗miRNA治疗的相关问题。本文献的数据是使用各种搜索引擎提取和总结的,如Google Scholar、Pubmed、Scopus和NCBI,使用不同的术语,如NDD、PD、AD、HD、mRNA的纳米制剂以及miRNA在诊断和治疗中的作用。结果:miRNA控制着各种生物学作用,如神经元分化、突触可塑性、细胞保护、神经炎症、氧化应激、细胞凋亡和伴侣介导的自噬,以及中枢神经系统中的轴突生长和诊断。各种miRNA参与PD中蛋白质聚集的调节和AD中β-分泌酶活性的调节。在HD中,亨廷顿蛋白(Htt)的突变干扰Ago1和Ago2,从而影响miRNA的生物发生。目前,许多反义技术正处于抑制或促进miRNA活性的研究阶段。结论:这篇综述为利用miRNA诊断和预后NDDs提供了新的治疗方法和新的生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Current Updates on the Role of MicroRNA in the Diagnosis and Treatment of Neurodegenerative Diseases.

Background: MicroRNAs (miRNA) are small noncoding RNAs that play a significant role in the regulation of gene expression. The literature has explored the key involvement of miRNAs in the diagnosis, prognosis, and treatment of various neurodegenerative diseases (NDD), such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). The miRNA regulates various signalling pathways; its dysregulation is involved in the pathogenesis of NDD.

Objective: The present review is focused on the involvement of miRNAs in the pathogenesis of NDD and their role in the treatment or management of NDD. The literature provides comprehensive and cutting-edge knowledge for students studying neurology, researchers, clinical psychologists, practitioners, pathologists, and drug development agencies to comprehend the role of miRNAs in the NDD's pathogenesis, regulation of various genes/signalling pathways, such as α-synuclein, P53, amyloid-β, high mobility group protein (HMGB1), and IL-1β, NMDA receptor signalling, cholinergic signalling, etc. Methods: The issues associated with using anti-miRNA therapy are also summarized in this review. The data for this literature were extracted and summarized using various search engines, such as Google Scholar, Pubmed, Scopus, and NCBI using different terms, such as NDD, PD, AD, HD, nanoformulations of mRNA, and role of miRNA in diagnosis and treatment.

Results: The miRNAs control various biological actions, such as neuronal differentiation, synaptic plasticity, cytoprotection, neuroinflammation, oxidative stress, apoptosis and chaperone-mediated autophagy, and neurite growth in the central nervous system and diagnosis. Various miRNAs are involved in the regulation of protein aggregation in PD and modulating β-secretase activity in AD. In HD, mutation in the huntingtin (Htt) protein interferes with Ago1 and Ago2, thus affecting the miRNA biogenesis. Currently, many anti-sense technologies are in the research phase for either inhibiting or promoting the activity of miRNA.

Conclusion: This review provides new therapeutic approaches and novel biomarkers for the diagnosis and prognosis of NDDs by using miRNA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current gene therapy
Current gene therapy 医学-遗传学
CiteScore
6.70
自引率
2.80%
发文量
46
期刊介绍: Current Gene Therapy is a bi-monthly peer-reviewed journal aimed at academic and industrial scientists with an interest in major topics concerning basic research and clinical applications of gene and cell therapy of diseases. Cell therapy manuscripts can also include application in diseases when cells have been genetically modified. Current Gene Therapy publishes full-length/mini reviews and original research on the latest developments in gene transfer and gene expression analysis, vector development, cellular genetic engineering, animal models and human clinical applications of gene and cell therapy for the treatment of diseases. Current Gene Therapy publishes reviews and original research containing experimental data on gene and cell therapy. The journal also includes manuscripts on technological advances, ethical and regulatory considerations of gene and cell therapy. Reviews should provide the reader with a comprehensive assessment of any area of experimental biology applied to molecular medicine that is not only of significance within a particular field of gene therapy and cell therapy but also of interest to investigators in other fields. Authors are encouraged to provide their own assessment and vision for future advances. Reviews are also welcome on late breaking discoveries on which substantial literature has not yet been amassed. Such reviews provide a forum for sharply focused topics of recent experimental investigations in gene therapy primarily to make these results accessible to both clinical and basic researchers. Manuscripts containing experimental data should be original data, not previously published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信