广义增长条件下的边界正则性

IF 0.7 3区 数学 Q2 MATHEMATICS
Petteri Harjulehto, P. Hästö
{"title":"广义增长条件下的边界正则性","authors":"Petteri Harjulehto, P. Hästö","doi":"10.4171/ZAA/1628","DOIUrl":null,"url":null,"abstract":"We study the Dirichlet φ-energy integral with Sobolev boundary values. The function φ has generalized Orlicz growth. Special cases include variable exponent and double phase growths. We show that minimizers are regular at the boundary provided a weak capacity fatness condition is satisfied. This condition is satisfies for instance if the boundary is Lipschitz. The results are new even for Orlicz spaces.","PeriodicalId":54402,"journal":{"name":"Zeitschrift fur Analysis und ihre Anwendungen","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/ZAA/1628","citationCount":"36","resultStr":"{\"title\":\"Boundary Regularity under Generalized Growth Conditions\",\"authors\":\"Petteri Harjulehto, P. Hästö\",\"doi\":\"10.4171/ZAA/1628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Dirichlet φ-energy integral with Sobolev boundary values. The function φ has generalized Orlicz growth. Special cases include variable exponent and double phase growths. We show that minimizers are regular at the boundary provided a weak capacity fatness condition is satisfied. This condition is satisfies for instance if the boundary is Lipschitz. The results are new even for Orlicz spaces.\",\"PeriodicalId\":54402,\"journal\":{\"name\":\"Zeitschrift fur Analysis und ihre Anwendungen\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/ZAA/1628\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Analysis und ihre Anwendungen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ZAA/1628\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Analysis und ihre Anwendungen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ZAA/1628","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 36

摘要

我们研究了具有Sobolev边值的Dirichletφ-能量积分。函数φ推广了Orlicz增长。特殊情况包括可变指数增长和双相增长。我们证明了在满足弱容量肥胖条件的情况下,极小值在边界处是正则的。例如,如果边界是Lipschitz,则满足该条件。即使对于Orlicz空间,结果也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary Regularity under Generalized Growth Conditions
We study the Dirichlet φ-energy integral with Sobolev boundary values. The function φ has generalized Orlicz growth. Special cases include variable exponent and double phase growths. We show that minimizers are regular at the boundary provided a weak capacity fatness condition is satisfied. This condition is satisfies for instance if the boundary is Lipschitz. The results are new even for Orlicz spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: The Journal of Analysis and its Applications aims at disseminating theoretical knowledge in the field of analysis and, at the same time, cultivating and extending its applications. To this end, it publishes research articles on differential equations and variational problems, functional analysis and operator theory together with their theoretical foundations and their applications – within mathematics, physics and other disciplines of the exact sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信