具有奇异速度对准的可压缩Euler系统的全局经典解

IF 0.6 Q4 MATHEMATICS, APPLIED
Li Chen, Changhui Tan, Lining Tong
{"title":"具有奇异速度对准的可压缩Euler系统的全局经典解","authors":"Li Chen, Changhui Tan, Lining Tong","doi":"10.4310/maa.2021.v28.n2.a3","DOIUrl":null,"url":null,"abstract":"We consider a compressible Euler system with singular velocity alignment, known as the Euler-alignment system, describing the flocking behaviors of large animal groups. We establish a local well-posedness theory for the system, as well as a global well-posedness theory for small initial data. We also show the asymptotic flocking behavior, where solutions converge to a constant steady state exponentially in time.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On the global classical solution to compressible Euler system with singular velocity alignment\",\"authors\":\"Li Chen, Changhui Tan, Lining Tong\",\"doi\":\"10.4310/maa.2021.v28.n2.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a compressible Euler system with singular velocity alignment, known as the Euler-alignment system, describing the flocking behaviors of large animal groups. We establish a local well-posedness theory for the system, as well as a global well-posedness theory for small initial data. We also show the asymptotic flocking behavior, where solutions converge to a constant steady state exponentially in time.\",\"PeriodicalId\":18467,\"journal\":{\"name\":\"Methods and applications of analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and applications of analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/maa.2021.v28.n2.a3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/maa.2021.v28.n2.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 12

摘要

我们考虑了一个具有奇异速度对齐的可压缩欧拉系统,称为欧拉对齐系统,描述了大型动物群体的群集行为。我们建立了系统的局部适定性理论,以及小初始数据的全局适定性理论。我们还展示了渐近群集行为,其中解在时间上指数收敛到恒定稳态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the global classical solution to compressible Euler system with singular velocity alignment
We consider a compressible Euler system with singular velocity alignment, known as the Euler-alignment system, describing the flocking behaviors of large animal groups. We establish a local well-posedness theory for the system, as well as a global well-posedness theory for small initial data. We also show the asymptotic flocking behavior, where solutions converge to a constant steady state exponentially in time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信