基于平均理论的三次齐次非线性多项式微分系统的4维零Hopf分支

IF 0.2 Q4 MATHEMATICS, APPLIED
Amina Feddaoui, J. Llibre, A. Makhlouf
{"title":"基于平均理论的三次齐次非线性多项式微分系统的4维零Hopf分支","authors":"Amina Feddaoui, J. Llibre, A. Makhlouf","doi":"10.1504/ijdsde.2020.10031333","DOIUrl":null,"url":null,"abstract":"The averaging theory of second order shows that for polynomial differential systems in ℝ4 with cubic homogeneous nonlinearities at least nine limit cycles can be born in a zero-Hopf bifurcation.","PeriodicalId":43101,"journal":{"name":"International Journal of Dynamical Systems and Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2020-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"4-dimensional zero-Hopf bifurcation for polynomial differentials systems with cubic homogeneous nonlinearities via averaging theory\",\"authors\":\"Amina Feddaoui, J. Llibre, A. Makhlouf\",\"doi\":\"10.1504/ijdsde.2020.10031333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The averaging theory of second order shows that for polynomial differential systems in ℝ4 with cubic homogeneous nonlinearities at least nine limit cycles can be born in a zero-Hopf bifurcation.\",\"PeriodicalId\":43101,\"journal\":{\"name\":\"International Journal of Dynamical Systems and Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Dynamical Systems and Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijdsde.2020.10031333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Dynamical Systems and Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijdsde.2020.10031333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

二阶平均理论表明ℝ4具有三次齐次非线性,在零Hopf分岔中可以产生至少九个极限环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
4-dimensional zero-Hopf bifurcation for polynomial differentials systems with cubic homogeneous nonlinearities via averaging theory
The averaging theory of second order shows that for polynomial differential systems in ℝ4 with cubic homogeneous nonlinearities at least nine limit cycles can be born in a zero-Hopf bifurcation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
16
期刊介绍: IJDSDE is a quarterly international journal that publishes original research papers of high quality in all areas related to dynamical systems and differential equations and their applications in biology, economics, engineering, physics, and other related areas of science. Manuscripts concerned with the development and application innovative mathematical tools and methods from dynamical systems and differential equations, are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信