纳入近期气候变化的气候系统特性估计

Q1 Mathematics
A. Libardoni, C. Forest, A. Sokolov, E. Monier
{"title":"纳入近期气候变化的气候系统特性估计","authors":"A. Libardoni, C. Forest, A. Sokolov, E. Monier","doi":"10.5194/ASCMO-4-19-2018","DOIUrl":null,"url":null,"abstract":"Abstract. Historical time series of surface temperature and ocean heat content changes\nare commonly used metrics to diagnose climate change and estimate properties\nof the climate system. We show that recent trends, namely the slowing of\nsurface temperature rise at the beginning of the 21st century and the\nacceleration of heat stored in the deep ocean, have a substantial impact on\nthese estimates. Using the Massachusetts Institute of Technology Earth System\nModel (MESM), we vary three model parameters that influence the behavior of\nthe climate system: effective climate sensitivity (ECS), the effective ocean\ndiffusivity of heat anomalies by all mixing processes (Kv), and the net\nanthropogenic aerosol forcing scaling factor. Each model run is compared to\nobserved changes in decadal mean surface temperature anomalies and the trend\nin global mean ocean heat content change to derive a joint probability\ndistribution function for the model parameters. Marginal distributions for\nindividual parameters are found by integrating over the other two parameters.\nTo investigate how the inclusion of recent temperature changes affects our\nestimates, we systematically include additional data by choosing periods that\nend in 1990, 2000, and 2010. We find that estimates of ECS increase in\nresponse to rising global surface temperatures when data beyond 1990 are\nincluded, but due to the slowdown of surface temperature rise in the early\n21st century, estimates when using data up to 2000 are greater than when data\nup to 2010 are used. We also show that estimates of Kv increase in\nresponse to the acceleration of heat stored in the ocean as data beyond 1990\nare included. Further, we highlight how including spatial patterns of surface\ntemperature change modifies the estimates. We show that including latitudinal\nstructure in the climate change signal impacts properties with spatial\ndependence, namely the aerosol forcing pattern, more than properties defined\nfor the global mean, climate sensitivity, and ocean diffusivity.\n","PeriodicalId":36792,"journal":{"name":"Advances in Statistical Climatology, Meteorology and Oceanography","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Estimates of climate system properties incorporating recent climate change\",\"authors\":\"A. Libardoni, C. Forest, A. Sokolov, E. Monier\",\"doi\":\"10.5194/ASCMO-4-19-2018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Historical time series of surface temperature and ocean heat content changes\\nare commonly used metrics to diagnose climate change and estimate properties\\nof the climate system. We show that recent trends, namely the slowing of\\nsurface temperature rise at the beginning of the 21st century and the\\nacceleration of heat stored in the deep ocean, have a substantial impact on\\nthese estimates. Using the Massachusetts Institute of Technology Earth System\\nModel (MESM), we vary three model parameters that influence the behavior of\\nthe climate system: effective climate sensitivity (ECS), the effective ocean\\ndiffusivity of heat anomalies by all mixing processes (Kv), and the net\\nanthropogenic aerosol forcing scaling factor. Each model run is compared to\\nobserved changes in decadal mean surface temperature anomalies and the trend\\nin global mean ocean heat content change to derive a joint probability\\ndistribution function for the model parameters. Marginal distributions for\\nindividual parameters are found by integrating over the other two parameters.\\nTo investigate how the inclusion of recent temperature changes affects our\\nestimates, we systematically include additional data by choosing periods that\\nend in 1990, 2000, and 2010. We find that estimates of ECS increase in\\nresponse to rising global surface temperatures when data beyond 1990 are\\nincluded, but due to the slowdown of surface temperature rise in the early\\n21st century, estimates when using data up to 2000 are greater than when data\\nup to 2010 are used. We also show that estimates of Kv increase in\\nresponse to the acceleration of heat stored in the ocean as data beyond 1990\\nare included. Further, we highlight how including spatial patterns of surface\\ntemperature change modifies the estimates. We show that including latitudinal\\nstructure in the climate change signal impacts properties with spatial\\ndependence, namely the aerosol forcing pattern, more than properties defined\\nfor the global mean, climate sensitivity, and ocean diffusivity.\\n\",\"PeriodicalId\":36792,\"journal\":{\"name\":\"Advances in Statistical Climatology, Meteorology and Oceanography\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Statistical Climatology, Meteorology and Oceanography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/ASCMO-4-19-2018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Statistical Climatology, Meteorology and Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ASCMO-4-19-2018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 10

摘要

摘要地表温度和海洋热含量变化的历史时间序列是诊断气候变化和估计气候系统特性的常用指标。我们发现,最近的趋势,即21世纪初地表温度上升的放缓和深海储存热量的加速,对这些估计产生了重大影响。使用麻省理工学院地球系统模型(MESM),我们改变了影响气候系统行为的三个模型参数:有效气候敏感性(ECS)、所有混合过程中热异常的有效海洋扩散率(Kv)和人为气溶胶净强迫标度因子。将每个模型运行与观测到的十年平均表面温度异常变化和全球平均海洋热含量变化趋势进行比较,得出模型参数的联合概率分布函数。通过对其他两个参数进行积分,可以找到单个参数的边际分布。为了研究纳入最近的温度变化如何影响我们的估计,我们通过选择1990年、2000年和2010年结束的时间段,系统地纳入了额外的数据。我们发现,当包括1990年以后的数据时,ECS的估计值会随着全球表面温度的上升而增加,但由于21世纪初表面温度上升的放缓,使用2000年之前的数据时的估计值比使用2010年之前的数据时的估计值更大。我们还表明,随着1990年以后的数据被包括在内,Kv的估计值随着海洋中储存热量的加速而增加。此外,我们强调了包括表面温度变化的空间模式如何修改估计。我们表明,在气候变化信号中包括纬度结构会影响具有空间依赖性的特性,即气溶胶强迫模式,而不是全球平均值、气候敏感性和海洋扩散率所定义的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimates of climate system properties incorporating recent climate change
Abstract. Historical time series of surface temperature and ocean heat content changes are commonly used metrics to diagnose climate change and estimate properties of the climate system. We show that recent trends, namely the slowing of surface temperature rise at the beginning of the 21st century and the acceleration of heat stored in the deep ocean, have a substantial impact on these estimates. Using the Massachusetts Institute of Technology Earth System Model (MESM), we vary three model parameters that influence the behavior of the climate system: effective climate sensitivity (ECS), the effective ocean diffusivity of heat anomalies by all mixing processes (Kv), and the net anthropogenic aerosol forcing scaling factor. Each model run is compared to observed changes in decadal mean surface temperature anomalies and the trend in global mean ocean heat content change to derive a joint probability distribution function for the model parameters. Marginal distributions for individual parameters are found by integrating over the other two parameters. To investigate how the inclusion of recent temperature changes affects our estimates, we systematically include additional data by choosing periods that end in 1990, 2000, and 2010. We find that estimates of ECS increase in response to rising global surface temperatures when data beyond 1990 are included, but due to the slowdown of surface temperature rise in the early 21st century, estimates when using data up to 2000 are greater than when data up to 2010 are used. We also show that estimates of Kv increase in response to the acceleration of heat stored in the ocean as data beyond 1990 are included. Further, we highlight how including spatial patterns of surface temperature change modifies the estimates. We show that including latitudinal structure in the climate change signal impacts properties with spatial dependence, namely the aerosol forcing pattern, more than properties defined for the global mean, climate sensitivity, and ocean diffusivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Statistical Climatology, Meteorology and Oceanography
Advances in Statistical Climatology, Meteorology and Oceanography Earth and Planetary Sciences-Atmospheric Science
CiteScore
4.80
自引率
0.00%
发文量
9
审稿时长
26 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信