有限速度Markov切换Ornstein–Uhlenbeck过程驱动的随机进化的平稳密度函数

IF 0.3 Q4 STATISTICS & PROBABILITY
A. Pogorui, R. Rodríguez-Dagnino
{"title":"有限速度Markov切换Ornstein–Uhlenbeck过程驱动的随机进化的平稳密度函数","authors":"A. Pogorui, R. Rodríguez-Dagnino","doi":"10.1515/rose-2022-2075","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider a new telegraph process of Ornstein–Uhlenbeck type. The process is obtained by generalizing the telegraph process in a similar manner to how the Ornstein–Uhlenbeck process was obtained from the Wiener process, namely by adding a drift coefficient proportional to a displacement from the origin. This process was first introduced by Ratanov in [N. Ratanov, Ornstein–Uhlenbeck process of bounded variation, Methodol. Comput. Appl. Probab. 23 2021, 925–946]. We obtain the infinitesimal operator of this process and we present formulas for finding its stationary probability density. We consider both the symmetric and asymmetric cases.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"30 1","pages":"113 - 120"},"PeriodicalIF":0.3000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stationary density function for a random evolution driven by a Markov-switching Ornstein–Uhlenbeck process with finite velocity\",\"authors\":\"A. Pogorui, R. Rodríguez-Dagnino\",\"doi\":\"10.1515/rose-2022-2075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we consider a new telegraph process of Ornstein–Uhlenbeck type. The process is obtained by generalizing the telegraph process in a similar manner to how the Ornstein–Uhlenbeck process was obtained from the Wiener process, namely by adding a drift coefficient proportional to a displacement from the origin. This process was first introduced by Ratanov in [N. Ratanov, Ornstein–Uhlenbeck process of bounded variation, Methodol. Comput. Appl. Probab. 23 2021, 925–946]. We obtain the infinitesimal operator of this process and we present formulas for finding its stationary probability density. We consider both the symmetric and asymmetric cases.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"30 1\",\"pages\":\"113 - 120\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2022-2075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2022-2075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

摘要在本文中,我们考虑了一种新的Ornstein–Uhlenbeck类型的电报过程。该过程是通过将电报过程以类似于从维纳过程中获得奥恩斯坦-乌伦贝克过程的方式进行推广而获得的,即通过添加与原点位移成比例的漂移系数。Ratanov在[N.Ratanov,Ornstein–Uhlenbeck有界变异过程,Methodol.Comput.Appl.Probab.232021,925–946]中首次引入了这一过程。我们得到了这个过程的无穷小算子,并给出了求其平稳概率密度的公式。我们同时考虑对称和非对称情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stationary density function for a random evolution driven by a Markov-switching Ornstein–Uhlenbeck process with finite velocity
Abstract In this paper, we consider a new telegraph process of Ornstein–Uhlenbeck type. The process is obtained by generalizing the telegraph process in a similar manner to how the Ornstein–Uhlenbeck process was obtained from the Wiener process, namely by adding a drift coefficient proportional to a displacement from the origin. This process was first introduced by Ratanov in [N. Ratanov, Ornstein–Uhlenbeck process of bounded variation, Methodol. Comput. Appl. Probab. 23 2021, 925–946]. We obtain the infinitesimal operator of this process and we present formulas for finding its stationary probability density. We consider both the symmetric and asymmetric cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信