Sokyna M. Alqatawneh, Khalid Jaber, Mosa Salah, D. Yehia, Omayma Alqatawneh, Abdulrahman Abulahoum
{"title":"利用并行机器学习技术将目标跟踪系统应用于公共监控摄像头以加强隔离和社交距离","authors":"Sokyna M. Alqatawneh, Khalid Jaber, Mosa Salah, D. Yehia, Omayma Alqatawneh, Abdulrahman Abulahoum","doi":"10.15849/ijasca.211128.12","DOIUrl":null,"url":null,"abstract":"Like many countries, Jordan has resorted to lockdown in an attempt to contain the outbreak of Coronavirus (Covid-19). A set of precautions such as quarantines, isolations, and social distancing were taken in order to tackle its rapid spread of Covid-19. However, the authorities were facing a serious issue with enforcing quarantine instructions and social distancing among its people. In this paper, a social distancing mentoring system has been designed to alert the authorities if any of the citizens violated the quarantine instructions and to detect the crowds and measure their social distancing using an object tracking technique that works in real-time base. This system utilises the widespread surveillance cameras that already exist in public places and outside many residential buildings. To ensure the effectiveness of this approach, the system uses cameras deployed on the campus of Al-Zaytoonah University of Jordan. The results showed the efficiency of this system in tracking people and determining the distances between them in accordance with public safety instructions. This work is the first approach to handle the classification challenges for moving objects using a shared-memory model of multicore techniques. Keywords: Covid-19, Parallel computing, Risk management, Social distancing, Tracking system.","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Employing of Object Tracking System in Public Surveillance Cameras to Enforce Quarantine and Social Distancing Using Parallel Machine Learning Techniques\",\"authors\":\"Sokyna M. Alqatawneh, Khalid Jaber, Mosa Salah, D. Yehia, Omayma Alqatawneh, Abdulrahman Abulahoum\",\"doi\":\"10.15849/ijasca.211128.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Like many countries, Jordan has resorted to lockdown in an attempt to contain the outbreak of Coronavirus (Covid-19). A set of precautions such as quarantines, isolations, and social distancing were taken in order to tackle its rapid spread of Covid-19. However, the authorities were facing a serious issue with enforcing quarantine instructions and social distancing among its people. In this paper, a social distancing mentoring system has been designed to alert the authorities if any of the citizens violated the quarantine instructions and to detect the crowds and measure their social distancing using an object tracking technique that works in real-time base. This system utilises the widespread surveillance cameras that already exist in public places and outside many residential buildings. To ensure the effectiveness of this approach, the system uses cameras deployed on the campus of Al-Zaytoonah University of Jordan. The results showed the efficiency of this system in tracking people and determining the distances between them in accordance with public safety instructions. This work is the first approach to handle the classification challenges for moving objects using a shared-memory model of multicore techniques. Keywords: Covid-19, Parallel computing, Risk management, Social distancing, Tracking system.\",\"PeriodicalId\":38638,\"journal\":{\"name\":\"International Journal of Advances in Soft Computing and its Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Soft Computing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15849/ijasca.211128.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15849/ijasca.211128.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Employing of Object Tracking System in Public Surveillance Cameras to Enforce Quarantine and Social Distancing Using Parallel Machine Learning Techniques
Like many countries, Jordan has resorted to lockdown in an attempt to contain the outbreak of Coronavirus (Covid-19). A set of precautions such as quarantines, isolations, and social distancing were taken in order to tackle its rapid spread of Covid-19. However, the authorities were facing a serious issue with enforcing quarantine instructions and social distancing among its people. In this paper, a social distancing mentoring system has been designed to alert the authorities if any of the citizens violated the quarantine instructions and to detect the crowds and measure their social distancing using an object tracking technique that works in real-time base. This system utilises the widespread surveillance cameras that already exist in public places and outside many residential buildings. To ensure the effectiveness of this approach, the system uses cameras deployed on the campus of Al-Zaytoonah University of Jordan. The results showed the efficiency of this system in tracking people and determining the distances between them in accordance with public safety instructions. This work is the first approach to handle the classification challenges for moving objects using a shared-memory model of multicore techniques. Keywords: Covid-19, Parallel computing, Risk management, Social distancing, Tracking system.
期刊介绍:
The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.