Xinyu Du, Shengbing Jiang, D. Zhou, Alaeddin Bani Milhim, Hossein Sadjadi
{"title":"汽车电子控制单元的接地故障诊断","authors":"Xinyu Du, Shengbing Jiang, D. Zhou, Alaeddin Bani Milhim, Hossein Sadjadi","doi":"10.36001/ijphm.2023.v14i3.3128","DOIUrl":null,"url":null,"abstract":"An electronic control unit (ECU) with a floating ground is not able to receive or transmit messages or participate in controller area network (CAN) communication. The absence of any ECU, either temporarily or permanently, negatively impacts vehicle functionalities. The offset ground, which by itself will not affect bus functionalities if the grounding resistance is small, however, may evolve into a floating ground or behave similarly if the resistance is large. In this work, the correlation among ground faults, either offset or floating, and CAN bus voltage or messages are analyzed based on the equivalent circuit models and the bus protocol. A voltage-based solution to detect ground faults is proposed. With the help of bus messages, both faults can be isolated at the ECU level. Considering the inherent system delay between the message fetching and voltage measurement, a normalized voltage-message correlation approach with the bus load estimation is developed as well. All proposed approaches are implemented to an Arduino-based embedded system and validated on a vehicle frame.","PeriodicalId":42100,"journal":{"name":"International Journal of Prognostics and Health Management","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ground Fault Diagnostics for Automotive Electronic Control Units\",\"authors\":\"Xinyu Du, Shengbing Jiang, D. Zhou, Alaeddin Bani Milhim, Hossein Sadjadi\",\"doi\":\"10.36001/ijphm.2023.v14i3.3128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An electronic control unit (ECU) with a floating ground is not able to receive or transmit messages or participate in controller area network (CAN) communication. The absence of any ECU, either temporarily or permanently, negatively impacts vehicle functionalities. The offset ground, which by itself will not affect bus functionalities if the grounding resistance is small, however, may evolve into a floating ground or behave similarly if the resistance is large. In this work, the correlation among ground faults, either offset or floating, and CAN bus voltage or messages are analyzed based on the equivalent circuit models and the bus protocol. A voltage-based solution to detect ground faults is proposed. With the help of bus messages, both faults can be isolated at the ECU level. Considering the inherent system delay between the message fetching and voltage measurement, a normalized voltage-message correlation approach with the bus load estimation is developed as well. All proposed approaches are implemented to an Arduino-based embedded system and validated on a vehicle frame.\",\"PeriodicalId\":42100,\"journal\":{\"name\":\"International Journal of Prognostics and Health Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Prognostics and Health Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/ijphm.2023.v14i3.3128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Prognostics and Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2023.v14i3.3128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Ground Fault Diagnostics for Automotive Electronic Control Units
An electronic control unit (ECU) with a floating ground is not able to receive or transmit messages or participate in controller area network (CAN) communication. The absence of any ECU, either temporarily or permanently, negatively impacts vehicle functionalities. The offset ground, which by itself will not affect bus functionalities if the grounding resistance is small, however, may evolve into a floating ground or behave similarly if the resistance is large. In this work, the correlation among ground faults, either offset or floating, and CAN bus voltage or messages are analyzed based on the equivalent circuit models and the bus protocol. A voltage-based solution to detect ground faults is proposed. With the help of bus messages, both faults can be isolated at the ECU level. Considering the inherent system delay between the message fetching and voltage measurement, a normalized voltage-message correlation approach with the bus load estimation is developed as well. All proposed approaches are implemented to an Arduino-based embedded system and validated on a vehicle frame.