{"title":"基于粗糙模糊集和并行量子遗传算法的入侵检测","authors":"Zhang Ling, Gui Qi, Huang Min","doi":"10.3233/jhs-222070","DOIUrl":null,"url":null,"abstract":"An intrusion detection method using rough-fuzzy set and parallel quantum genetic algorithm (RFS-QGAID) is proposed in this paper. The RFS-QGAID is applied to solve the serious problems of determining the optimal antibodies subsets used to detect an anomaly. To obtain a simplified antibodies collection for high dimensional Log data sets, RFS is applied to delete the redundant antibody features and obtain the optimal antibodies features combination. Then, the optimal attitudes are entered into the QGA classifier for learning and training in the following stage. At last, the detected Log antigens are fed into RFS-QGAID, and we can classify the intrusion types. With RFS-QGAID, we give the simulations, the results on real Log data sets show that: the higher detection accuracy of RFS-QGAID is higher detection accuracy, but the false negative rate is lower for small samples sets, the adaptive performance is higher than other detection algorithms.","PeriodicalId":54809,"journal":{"name":"Journal of High Speed Networks","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intrusion detection using rough-fuzzy set and parallel quantum genetic algorithm\",\"authors\":\"Zhang Ling, Gui Qi, Huang Min\",\"doi\":\"10.3233/jhs-222070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An intrusion detection method using rough-fuzzy set and parallel quantum genetic algorithm (RFS-QGAID) is proposed in this paper. The RFS-QGAID is applied to solve the serious problems of determining the optimal antibodies subsets used to detect an anomaly. To obtain a simplified antibodies collection for high dimensional Log data sets, RFS is applied to delete the redundant antibody features and obtain the optimal antibodies features combination. Then, the optimal attitudes are entered into the QGA classifier for learning and training in the following stage. At last, the detected Log antigens are fed into RFS-QGAID, and we can classify the intrusion types. With RFS-QGAID, we give the simulations, the results on real Log data sets show that: the higher detection accuracy of RFS-QGAID is higher detection accuracy, but the false negative rate is lower for small samples sets, the adaptive performance is higher than other detection algorithms.\",\"PeriodicalId\":54809,\"journal\":{\"name\":\"Journal of High Speed Networks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Speed Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jhs-222070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Speed Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jhs-222070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Intrusion detection using rough-fuzzy set and parallel quantum genetic algorithm
An intrusion detection method using rough-fuzzy set and parallel quantum genetic algorithm (RFS-QGAID) is proposed in this paper. The RFS-QGAID is applied to solve the serious problems of determining the optimal antibodies subsets used to detect an anomaly. To obtain a simplified antibodies collection for high dimensional Log data sets, RFS is applied to delete the redundant antibody features and obtain the optimal antibodies features combination. Then, the optimal attitudes are entered into the QGA classifier for learning and training in the following stage. At last, the detected Log antigens are fed into RFS-QGAID, and we can classify the intrusion types. With RFS-QGAID, we give the simulations, the results on real Log data sets show that: the higher detection accuracy of RFS-QGAID is higher detection accuracy, but the false negative rate is lower for small samples sets, the adaptive performance is higher than other detection algorithms.
期刊介绍:
The Journal of High Speed Networks is an international archival journal, active since 1992, providing a publication vehicle for covering a large number of topics of interest in the high performance networking and communication area. Its audience includes researchers, managers as well as network designers and operators. The main goal will be to provide timely dissemination of information and scientific knowledge.
The journal will publish contributed papers on novel research, survey and position papers on topics of current interest, technical notes, and short communications to report progress on long-term projects. Submissions to the Journal will be refereed consistently with the review process of leading technical journals, based on originality, significance, quality, and clarity.
The journal will publish papers on a number of topics ranging from design to practical experiences with operational high performance/speed networks.