Erren Yao, Like Zhong, Ruixiong Li, Guang Xi, Hansen Zou, Huanran Wang
{"title":"压缩空气与化学储能一体化三联产系统的初步设计与技术经济评价","authors":"Erren Yao, Like Zhong, Ruixiong Li, Guang Xi, Hansen Zou, Huanran Wang","doi":"10.1063/5.0144607","DOIUrl":null,"url":null,"abstract":"The advantages of compressed air energy storage (CAES) have been demonstrated by the trigeneration system with the characteristic of high penetration of renewable energy. However, since the irreversible loss of compression heat occurs during the overall operation processes of CAES, the development of CAES with high energy efficiency has been hindered by the conventional conversion pathway of compression heat. Therefore, a trigeneration system integrated with compressed air and chemical energy storage is proposed in this study to improve energy utilization efficiency. The compression heat is converted into H2 and CO via the endothermic methanol decomposition reaction to improve its energy level during the charging process, and then the syngas production can be used for air preheating during the discharging process. The parametric analysis is first performed to investigate the technical and economic feasibility of the system. Subsequently, the multi-objective optimization is conducted to identify the tradeoffs in the thermo-economic performance of the system and acquire the optimal values of operating parameters. Notably, the proposed system with a computed exergy efficiency of 43.31% and levelized cost of energy (LCOE) of 97.53 $/MWh is selected as the most compromise solution by the decision maker of Technique for Order Preference by Similarity to an Ideal Solution among the Pareto optimum fronts, which are 8.47% higher than the exergy efficiency and 7.39 $/MWh lower than the LCOE under the design conditions.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preliminary design and techno-economic assessment of a trigeneration system integrated with compressed air and chemical energy storage\",\"authors\":\"Erren Yao, Like Zhong, Ruixiong Li, Guang Xi, Hansen Zou, Huanran Wang\",\"doi\":\"10.1063/5.0144607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advantages of compressed air energy storage (CAES) have been demonstrated by the trigeneration system with the characteristic of high penetration of renewable energy. However, since the irreversible loss of compression heat occurs during the overall operation processes of CAES, the development of CAES with high energy efficiency has been hindered by the conventional conversion pathway of compression heat. Therefore, a trigeneration system integrated with compressed air and chemical energy storage is proposed in this study to improve energy utilization efficiency. The compression heat is converted into H2 and CO via the endothermic methanol decomposition reaction to improve its energy level during the charging process, and then the syngas production can be used for air preheating during the discharging process. The parametric analysis is first performed to investigate the technical and economic feasibility of the system. Subsequently, the multi-objective optimization is conducted to identify the tradeoffs in the thermo-economic performance of the system and acquire the optimal values of operating parameters. Notably, the proposed system with a computed exergy efficiency of 43.31% and levelized cost of energy (LCOE) of 97.53 $/MWh is selected as the most compromise solution by the decision maker of Technique for Order Preference by Similarity to an Ideal Solution among the Pareto optimum fronts, which are 8.47% higher than the exergy efficiency and 7.39 $/MWh lower than the LCOE under the design conditions.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0144607\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0144607","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Preliminary design and techno-economic assessment of a trigeneration system integrated with compressed air and chemical energy storage
The advantages of compressed air energy storage (CAES) have been demonstrated by the trigeneration system with the characteristic of high penetration of renewable energy. However, since the irreversible loss of compression heat occurs during the overall operation processes of CAES, the development of CAES with high energy efficiency has been hindered by the conventional conversion pathway of compression heat. Therefore, a trigeneration system integrated with compressed air and chemical energy storage is proposed in this study to improve energy utilization efficiency. The compression heat is converted into H2 and CO via the endothermic methanol decomposition reaction to improve its energy level during the charging process, and then the syngas production can be used for air preheating during the discharging process. The parametric analysis is first performed to investigate the technical and economic feasibility of the system. Subsequently, the multi-objective optimization is conducted to identify the tradeoffs in the thermo-economic performance of the system and acquire the optimal values of operating parameters. Notably, the proposed system with a computed exergy efficiency of 43.31% and levelized cost of energy (LCOE) of 97.53 $/MWh is selected as the most compromise solution by the decision maker of Technique for Order Preference by Similarity to an Ideal Solution among the Pareto optimum fronts, which are 8.47% higher than the exergy efficiency and 7.39 $/MWh lower than the LCOE under the design conditions.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy