带摩擦的复合双摆

IF 3.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hollis Williams
{"title":"带摩擦的复合双摆","authors":"Hollis Williams","doi":"10.1016/j.finmec.2022.100164","DOIUrl":null,"url":null,"abstract":"<div><p>We study a version of the two-degree-of-freedom double pendulum in which the two point masses are replaced by rigid bodies of irregular shape and nonconservative forces are permitted. We derive the equations of motion by analysing the forces involved in the framework of screw theory. This distinguishes the work from similar studies in the literature, which typically consider a double pendulum composed with rods and assume equations of motion without derivation. The equations of motion are solved numerically using the fourth-order Runge-Kutta method to show that decreasing the friction of the axles can cause the trajectory of one of the pendulums to become aperiodic. The stability of steady state solutions is also analysed.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A compound double pendulum with friction\",\"authors\":\"Hollis Williams\",\"doi\":\"10.1016/j.finmec.2022.100164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a version of the two-degree-of-freedom double pendulum in which the two point masses are replaced by rigid bodies of irregular shape and nonconservative forces are permitted. We derive the equations of motion by analysing the forces involved in the framework of screw theory. This distinguishes the work from similar studies in the literature, which typically consider a double pendulum composed with rods and assume equations of motion without derivation. The equations of motion are solved numerically using the fourth-order Runge-Kutta method to show that decreasing the friction of the axles can cause the trajectory of one of the pendulums to become aperiodic. The stability of steady state solutions is also analysed.</p></div>\",\"PeriodicalId\":93433,\"journal\":{\"name\":\"Forces in mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forces in mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666359722000920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359722000920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了两自由度双摆的一种形式,其中两点质量被不规则形状的刚体所取代,并且允许有非保守力。我们通过分析螺旋理论框架中所涉及的力,推导出运动方程。这与文献中类似的研究工作不同,这些研究通常考虑由杆组成的双摆,并假设没有推导的运动方程。采用四阶龙格-库塔法对运动方程进行了数值求解,结果表明减小轴的摩擦力可以使其中一个摆的轨迹变为非周期。对稳态解的稳定性进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A compound double pendulum with friction

We study a version of the two-degree-of-freedom double pendulum in which the two point masses are replaced by rigid bodies of irregular shape and nonconservative forces are permitted. We derive the equations of motion by analysing the forces involved in the framework of screw theory. This distinguishes the work from similar studies in the literature, which typically consider a double pendulum composed with rods and assume equations of motion without derivation. The equations of motion are solved numerically using the fourth-order Runge-Kutta method to show that decreasing the friction of the axles can cause the trajectory of one of the pendulums to become aperiodic. The stability of steady state solutions is also analysed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forces in mechanics
Forces in mechanics Mechanics of Materials
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
52 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信