多项式X2+(Y2+1)2$X^2+(Y^2+1)^2$和X2+(Y3+Z3)2$X ^{2}+(Y^3+Z^3)^2$也捕获它们的素数

IF 1.5 1区 数学 Q1 MATHEMATICS
Jori Merikoski
{"title":"多项式X2+(Y2+1)2$X^2+(Y^2+1)^2$和X2+(Y3+Z3)2$X ^{2}+(Y^3+Z^3)^2$也捕获它们的素数","authors":"Jori Merikoski","doi":"10.1112/plms.12557","DOIUrl":null,"url":null,"abstract":"We show that there are infinitely many primes of the form X2+(Y2+1)2$X^2+(Y^2+1)^2$ and X2+(Y3+Z3)2$X^2+(Y^3+Z^3)^2$ . This extends the work of Friedlander and Iwaniec showing that there are infinitely many primes of the form X2+Y4$X^2+Y^4$ . More precisely, Friedlander and Iwaniec obtained an asymptotic formula for the number of primes of this form. For the sequences X2+(Y2+1)2$X^2+(Y^2+1)^2$ and X2+(Y3+Z3)2$X^2+(Y^3+Z^3)^2$ , we establish Type II information that is too narrow for an aysmptotic formula, but we can use Harman's sieve method to produce a lower bound of the correct order of magnitude for primes of form X2+(Y2+1)2$X^2+(Y^2+1)^2$ and X2+(Y3+Z3)2$X^2+(Y^3+Z^3)^2$ . Estimating the Type II sums is reduced to a counting problem that is solved by using the Weil bound, where the arithmetic input is quite different from the work of Friedlander and Iwaniec for X2+Y4$X^2+Y^4$ . We also show that there are infinitely many primes p=X2+Y2$p=X^2+Y^2$ where Y$Y$ is represented by an incomplete norm form of degree k$k$ with k−1$k-1$ variables. For this, we require a Deligne‐type bound for correlations of hyper‐Kloosterman sums.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The polynomials X2+(Y2+1)2$X^2+(Y^2+1)^2$ and X2+(Y3+Z3)2$X^{2} + (Y^3+Z^3)^2$ also capture their primes\",\"authors\":\"Jori Merikoski\",\"doi\":\"10.1112/plms.12557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that there are infinitely many primes of the form X2+(Y2+1)2$X^2+(Y^2+1)^2$ and X2+(Y3+Z3)2$X^2+(Y^3+Z^3)^2$ . This extends the work of Friedlander and Iwaniec showing that there are infinitely many primes of the form X2+Y4$X^2+Y^4$ . More precisely, Friedlander and Iwaniec obtained an asymptotic formula for the number of primes of this form. For the sequences X2+(Y2+1)2$X^2+(Y^2+1)^2$ and X2+(Y3+Z3)2$X^2+(Y^3+Z^3)^2$ , we establish Type II information that is too narrow for an aysmptotic formula, but we can use Harman's sieve method to produce a lower bound of the correct order of magnitude for primes of form X2+(Y2+1)2$X^2+(Y^2+1)^2$ and X2+(Y3+Z3)2$X^2+(Y^3+Z^3)^2$ . Estimating the Type II sums is reduced to a counting problem that is solved by using the Weil bound, where the arithmetic input is quite different from the work of Friedlander and Iwaniec for X2+Y4$X^2+Y^4$ . We also show that there are infinitely many primes p=X2+Y2$p=X^2+Y^2$ where Y$Y$ is represented by an incomplete norm form of degree k$k$ with k−1$k-1$ variables. For this, we require a Deligne‐type bound for correlations of hyper‐Kloosterman sums.\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12557\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12557","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了形式为X2+(Y2+1)2$X^2+(Y^2+1)^2$和X2+(Y3+Z3)2$X ^2+(Y ^3+Z^3)^2$的素数是无穷多的。这扩展了Friedlander和Iwaniec的工作,表明存在无限多个形式为X2+Y4$X^2+Y^4$的素数。更确切地说,Friedlander和Iwaniec得到了这种形式素数个数的渐近公式。对于序列X2+(Y2+1)2$X^2+(Y^2+1)^2$和X2+(Y3+Z3)2$X ^2+(Y ^3+Z^3)^2$,我们建立了对于aysmptotic公式来说太窄的II型信息,但我们可以使用Harman筛方法来产生形式为X2+(Y2+1)2$X^2+(Y^2+1)^2$和X2+(Y3+Z3)2$X ^2+(Y ^3+Z ^3)^2$的素数的正确数量级的下界。估计II型和被简化为一个计数问题,该问题通过使用Weil界来解决,其中算术输入与Friedlander和Iwaniec对X2+Y4$X^2+Y^4$的工作非常不同。我们还证明了存在无穷多个素数p=X2+Y2$p=X^2+Y^2$,其中Y$Y$由具有k−1$k-1$变量的k$k$的不完全范数形式表示。为此,我们需要超Kloosterman和的相关性的Deligne型界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The polynomials X2+(Y2+1)2$X^2+(Y^2+1)^2$ and X2+(Y3+Z3)2$X^{2} + (Y^3+Z^3)^2$ also capture their primes
We show that there are infinitely many primes of the form X2+(Y2+1)2$X^2+(Y^2+1)^2$ and X2+(Y3+Z3)2$X^2+(Y^3+Z^3)^2$ . This extends the work of Friedlander and Iwaniec showing that there are infinitely many primes of the form X2+Y4$X^2+Y^4$ . More precisely, Friedlander and Iwaniec obtained an asymptotic formula for the number of primes of this form. For the sequences X2+(Y2+1)2$X^2+(Y^2+1)^2$ and X2+(Y3+Z3)2$X^2+(Y^3+Z^3)^2$ , we establish Type II information that is too narrow for an aysmptotic formula, but we can use Harman's sieve method to produce a lower bound of the correct order of magnitude for primes of form X2+(Y2+1)2$X^2+(Y^2+1)^2$ and X2+(Y3+Z3)2$X^2+(Y^3+Z^3)^2$ . Estimating the Type II sums is reduced to a counting problem that is solved by using the Weil bound, where the arithmetic input is quite different from the work of Friedlander and Iwaniec for X2+Y4$X^2+Y^4$ . We also show that there are infinitely many primes p=X2+Y2$p=X^2+Y^2$ where Y$Y$ is represented by an incomplete norm form of degree k$k$ with k−1$k-1$ variables. For this, we require a Deligne‐type bound for correlations of hyper‐Kloosterman sums.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信