{"title":"二烯丙基硫化物减轻环磷酰胺诱导的大鼠肾病性脑病","authors":"S. Galal, Heba H. Mansour, Abeer A. Elkhoely","doi":"10.1080/15376516.2019.1695991","DOIUrl":null,"url":null,"abstract":"Abstract Diallyl sulfide (DAS) is a garlic-derived organosulfur compound. The current study was planned to evaluate the protecting effects of DAS against cyclophosphamide (CP)-induced nephropathic encephalopathy. DAS (100 mg/kg) was orally administered for 4 days, 60 min after the last dose, rats were injected with CP (150 mg/kg). DAS treatment before CP significantly decreased serum urea, creatinine, sodium, potassium, calcium, blood urea nitrogen (BUN), C-reactive protein (CRP), interleukin-6 (IL-6), interleukin-1β (IL-1ß) and tumor necrosis factor-alpha (TNF-α) compared with CP-treated rats. DAS treatment decreased malondialdehyde (MDA) and increased superoxide dismutase (SOD) and reduced glutathione (GSH) levels in the renal tissues and significantly attenuated the elevated neurotransmitters N-methyl-D-aspartate/adenosine triphosphate (NMDA), γ-aminobutyric acid (GABA) levels and remarkably restored neuronal nitric oxide (NO) level and nitric oxide synthase (nNOS) activity in the brain compared to CP-treated rats. DAS for 4 consecutive days before CP showed moderate positive immunohistochemically expression of the glial fibrillary acidic protein (GFAP) in the brain and kidney tissues comparable to CP-treated rats. DAS afforded renal and neuroprotection against CP-induced nephropathic encephalopathy due to its capacity to ameliorates the afore-mentioned biochemical parameters which were supported by histopathological and immunohistochemically examination.","PeriodicalId":49117,"journal":{"name":"Toxicology Mechanisms and Methods","volume":"30 1","pages":"208 - 218"},"PeriodicalIF":2.8000,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15376516.2019.1695991","citationCount":"7","resultStr":"{\"title\":\"Diallyl sulfide alleviates cyclophosphamide-induced nephropathic encephalopathy in rats\",\"authors\":\"S. Galal, Heba H. Mansour, Abeer A. Elkhoely\",\"doi\":\"10.1080/15376516.2019.1695991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Diallyl sulfide (DAS) is a garlic-derived organosulfur compound. The current study was planned to evaluate the protecting effects of DAS against cyclophosphamide (CP)-induced nephropathic encephalopathy. DAS (100 mg/kg) was orally administered for 4 days, 60 min after the last dose, rats were injected with CP (150 mg/kg). DAS treatment before CP significantly decreased serum urea, creatinine, sodium, potassium, calcium, blood urea nitrogen (BUN), C-reactive protein (CRP), interleukin-6 (IL-6), interleukin-1β (IL-1ß) and tumor necrosis factor-alpha (TNF-α) compared with CP-treated rats. DAS treatment decreased malondialdehyde (MDA) and increased superoxide dismutase (SOD) and reduced glutathione (GSH) levels in the renal tissues and significantly attenuated the elevated neurotransmitters N-methyl-D-aspartate/adenosine triphosphate (NMDA), γ-aminobutyric acid (GABA) levels and remarkably restored neuronal nitric oxide (NO) level and nitric oxide synthase (nNOS) activity in the brain compared to CP-treated rats. DAS for 4 consecutive days before CP showed moderate positive immunohistochemically expression of the glial fibrillary acidic protein (GFAP) in the brain and kidney tissues comparable to CP-treated rats. DAS afforded renal and neuroprotection against CP-induced nephropathic encephalopathy due to its capacity to ameliorates the afore-mentioned biochemical parameters which were supported by histopathological and immunohistochemically examination.\",\"PeriodicalId\":49117,\"journal\":{\"name\":\"Toxicology Mechanisms and Methods\",\"volume\":\"30 1\",\"pages\":\"208 - 218\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2019-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15376516.2019.1695991\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Mechanisms and Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15376516.2019.1695991\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2019.1695991","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Diallyl sulfide alleviates cyclophosphamide-induced nephropathic encephalopathy in rats
Abstract Diallyl sulfide (DAS) is a garlic-derived organosulfur compound. The current study was planned to evaluate the protecting effects of DAS against cyclophosphamide (CP)-induced nephropathic encephalopathy. DAS (100 mg/kg) was orally administered for 4 days, 60 min after the last dose, rats were injected with CP (150 mg/kg). DAS treatment before CP significantly decreased serum urea, creatinine, sodium, potassium, calcium, blood urea nitrogen (BUN), C-reactive protein (CRP), interleukin-6 (IL-6), interleukin-1β (IL-1ß) and tumor necrosis factor-alpha (TNF-α) compared with CP-treated rats. DAS treatment decreased malondialdehyde (MDA) and increased superoxide dismutase (SOD) and reduced glutathione (GSH) levels in the renal tissues and significantly attenuated the elevated neurotransmitters N-methyl-D-aspartate/adenosine triphosphate (NMDA), γ-aminobutyric acid (GABA) levels and remarkably restored neuronal nitric oxide (NO) level and nitric oxide synthase (nNOS) activity in the brain compared to CP-treated rats. DAS for 4 consecutive days before CP showed moderate positive immunohistochemically expression of the glial fibrillary acidic protein (GFAP) in the brain and kidney tissues comparable to CP-treated rats. DAS afforded renal and neuroprotection against CP-induced nephropathic encephalopathy due to its capacity to ameliorates the afore-mentioned biochemical parameters which were supported by histopathological and immunohistochemically examination.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including:
In vivo studies with standard and alternative species
In vitro studies and alternative methodologies
Molecular, biochemical, and cellular techniques
Pharmacokinetics and pharmacodynamics
Mathematical modeling and computer programs
Forensic analyses
Risk assessment
Data collection and analysis.