一类四阶椭圆型问题及相关不等式的整体解

IF 3.2 1区 数学 Q1 MATHEMATICS
L. D’Ambrosio, E. Mitidieri
{"title":"一类四阶椭圆型问题及相关不等式的整体解","authors":"L. D’Ambrosio, E. Mitidieri","doi":"10.1515/anona-2021-0217","DOIUrl":null,"url":null,"abstract":"Abstract We study distributional solutions of semilinear biharmonic equations of the type Δ2u+f(u)=0 onℝN, {\\Delta ^2}u + f(u) = 0\\quad on\\;{{\\mathbb R} ^N}, where f is a continuous function satisfying f (t)t ≥ c |t|q+1 for all t ∈ ℝ with c > 0 and q > 1. By using a new approach mainly based on careful choice of suitable weighted test functions and a new version of Hardy- Rellich inequalities, we prove several Liouville theorems independently of the dimension N and on the sign of the solutions.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"785 - 829"},"PeriodicalIF":3.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Entire solutions of certain fourth order elliptic problems and related inequalities\",\"authors\":\"L. D’Ambrosio, E. Mitidieri\",\"doi\":\"10.1515/anona-2021-0217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study distributional solutions of semilinear biharmonic equations of the type Δ2u+f(u)=0 onℝN, {\\\\Delta ^2}u + f(u) = 0\\\\quad on\\\\;{{\\\\mathbb R} ^N}, where f is a continuous function satisfying f (t)t ≥ c |t|q+1 for all t ∈ ℝ with c > 0 and q > 1. By using a new approach mainly based on careful choice of suitable weighted test functions and a new version of Hardy- Rellich inequalities, we prove several Liouville theorems independently of the dimension N and on the sign of the solutions.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\"11 1\",\"pages\":\"785 - 829\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2021-0217\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2021-0217","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要我们研究了Δ2u+f(u)=0型双线性双调和方程的分布解 在…上ℝN、 {\Delta^2}u+f(u)=0\quad on \;{\mathbb R}^N},其中f是满足f(t)t≥c|t|q+1的连续函数,对于所有t∈ℝ 其中c>0和q>1。利用一种主要基于谨慎选择合适的加权检验函数的新方法和Hardy-Rellich不等式的新版本,我们证明了几个独立于维数N和解的符号的Liouville定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entire solutions of certain fourth order elliptic problems and related inequalities
Abstract We study distributional solutions of semilinear biharmonic equations of the type Δ2u+f(u)=0 onℝN, {\Delta ^2}u + f(u) = 0\quad on\;{{\mathbb R} ^N}, where f is a continuous function satisfying f (t)t ≥ c |t|q+1 for all t ∈ ℝ with c > 0 and q > 1. By using a new approach mainly based on careful choice of suitable weighted test functions and a new version of Hardy- Rellich inequalities, we prove several Liouville theorems independently of the dimension N and on the sign of the solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信