具有生成回归的(部分)线性模型的两步序列估计和规范检验

IF 0.8 4区 经济学 Q3 ECONOMICS
Yu‐Chin Hsu, Jen-Che Liao, Eric S. Lin
{"title":"具有生成回归的(部分)线性模型的两步序列估计和规范检验","authors":"Yu‐Chin Hsu, Jen-Che Liao, Eric S. Lin","doi":"10.1080/07474938.2022.2082169","DOIUrl":null,"url":null,"abstract":"Abstract This paper studies three semiparametric models that are useful and frequently encountered in applied econometric work—a linear and two partially linear specifications with generated regressors, i.e., the regressors that are unobserved, but can be nonparametrically estimated from the data. Our framework allows for generated regressors to appear in linear or nonlinear components of partially linear models. We propose two-step series estimators for the finite-dimensional parameters, establish their -consistency (with sample size n) and asymptotic normality, and provide the asymptotic variance formulae that take into account the estimation error of generated regressors. Moreover, we develop a nonparametric specification test for the models considered. Numerical performances of the proposed estimators and test via simulation experiments and an empirical application illustrate the utility of our approach.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"41 1","pages":"985 - 1007"},"PeriodicalIF":0.8000,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two-step series estimation and specification testing of (partially) linear models with generated regressors\",\"authors\":\"Yu‐Chin Hsu, Jen-Che Liao, Eric S. Lin\",\"doi\":\"10.1080/07474938.2022.2082169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper studies three semiparametric models that are useful and frequently encountered in applied econometric work—a linear and two partially linear specifications with generated regressors, i.e., the regressors that are unobserved, but can be nonparametrically estimated from the data. Our framework allows for generated regressors to appear in linear or nonlinear components of partially linear models. We propose two-step series estimators for the finite-dimensional parameters, establish their -consistency (with sample size n) and asymptotic normality, and provide the asymptotic variance formulae that take into account the estimation error of generated regressors. Moreover, we develop a nonparametric specification test for the models considered. Numerical performances of the proposed estimators and test via simulation experiments and an empirical application illustrate the utility of our approach.\",\"PeriodicalId\":11438,\"journal\":{\"name\":\"Econometric Reviews\",\"volume\":\"41 1\",\"pages\":\"985 - 1007\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Reviews\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/07474938.2022.2082169\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2022.2082169","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文研究了三个在应用计量经济学工作中有用且经常遇到的半参数模型——一个线性规范和两个具有生成回归量的部分线性规范,即未观察到的回归量,但可以根据数据进行非参数估计。我们的框架允许生成的回归出现在部分线性模型的线性或非线性分量中。我们提出了有限维参数的两步级数估计,建立了它们的一致性(样本大小为n)和渐近正态性,并给出了考虑生成回归估计误差的渐近方差公式。此外,我们为所考虑的模型开发了一个非参数规范检验。所提出的估计量的数值性能以及通过模拟实验和经验应用进行的测试表明了我们方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-step series estimation and specification testing of (partially) linear models with generated regressors
Abstract This paper studies three semiparametric models that are useful and frequently encountered in applied econometric work—a linear and two partially linear specifications with generated regressors, i.e., the regressors that are unobserved, but can be nonparametrically estimated from the data. Our framework allows for generated regressors to appear in linear or nonlinear components of partially linear models. We propose two-step series estimators for the finite-dimensional parameters, establish their -consistency (with sample size n) and asymptotic normality, and provide the asymptotic variance formulae that take into account the estimation error of generated regressors. Moreover, we develop a nonparametric specification test for the models considered. Numerical performances of the proposed estimators and test via simulation experiments and an empirical application illustrate the utility of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometric Reviews
Econometric Reviews 管理科学-数学跨学科应用
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信