Sobolev满足Besov:具有Dirichlet、Neumann和混合边值的Poisson方程的正则性

IF 2 2区 数学 Q1 MATHEMATICS
C. Schneider, Flóra Orsolya Szemenyei
{"title":"Sobolev满足Besov:具有Dirichlet、Neumann和混合边值的Poisson方程的正则性","authors":"C. Schneider, Flóra Orsolya Szemenyei","doi":"10.1142/s0219530522500026","DOIUrl":null,"url":null,"abstract":"We study the regularity of solutions of the Poisson equation with Dirichlet, Neumann and mixed boundary values in polyhedral cones [Formula: see text] in the specific scale [Formula: see text] of Besov spaces. The regularity of the solution in these spaces determines the order of approximation that can be achieved by adaptive and nonlinear numerical schemes. We aim for a thorough discussion of homogeneous and inhomogeneous boundary data in all settings studied and show that the solutions are much smoother in this specific Besov scale compared to the fractional Sobolev scale [Formula: see text] in all cases, which justifies the use of adaptive schemes.","PeriodicalId":55519,"journal":{"name":"Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sobolev meets Besov: Regularity for the Poisson equation with Dirichlet, Neumann and mixed boundary values\",\"authors\":\"C. Schneider, Flóra Orsolya Szemenyei\",\"doi\":\"10.1142/s0219530522500026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the regularity of solutions of the Poisson equation with Dirichlet, Neumann and mixed boundary values in polyhedral cones [Formula: see text] in the specific scale [Formula: see text] of Besov spaces. The regularity of the solution in these spaces determines the order of approximation that can be achieved by adaptive and nonlinear numerical schemes. We aim for a thorough discussion of homogeneous and inhomogeneous boundary data in all settings studied and show that the solutions are much smoother in this specific Besov scale compared to the fractional Sobolev scale [Formula: see text] in all cases, which justifies the use of adaptive schemes.\",\"PeriodicalId\":55519,\"journal\":{\"name\":\"Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219530522500026\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530522500026","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了具有Dirichlet、Neumann和混合边值的Poisson方程在多面体锥[公式:见正文]中的解在Besov空间的特定尺度[公式:参见正文]下的正则性。这些空间中解的正则性决定了自适应和非线性数值格式可以实现的近似阶数。我们的目的是对所研究的所有设置中的齐次和非齐次边界数据进行彻底的讨论,并表明在所有情况下,与分数Sobolev尺度[公式:见正文]相比,在特定的Besov尺度下的解要平滑得多,这证明了自适应方案的使用是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sobolev meets Besov: Regularity for the Poisson equation with Dirichlet, Neumann and mixed boundary values
We study the regularity of solutions of the Poisson equation with Dirichlet, Neumann and mixed boundary values in polyhedral cones [Formula: see text] in the specific scale [Formula: see text] of Besov spaces. The regularity of the solution in these spaces determines the order of approximation that can be achieved by adaptive and nonlinear numerical schemes. We aim for a thorough discussion of homogeneous and inhomogeneous boundary data in all settings studied and show that the solutions are much smoother in this specific Besov scale compared to the fractional Sobolev scale [Formula: see text] in all cases, which justifies the use of adaptive schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
4.50%
发文量
29
审稿时长
>12 weeks
期刊介绍: Analysis and Applications publishes high quality mathematical papers that treat those parts of analysis which have direct or potential applications to the physical and biological sciences and engineering. Some of the topics from analysis include approximation theory, asymptotic analysis, calculus of variations, integral equations, integral transforms, ordinary and partial differential equations, delay differential equations, and perturbation methods. The primary aim of the journal is to encourage the development of new techniques and results in applied analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信