一维辐射传递方程的矩阵Riccati方程解

IF 0.7 4区 工程技术 Q3 MATHEMATICS, APPLIED
B. Ganapol, J. Patel
{"title":"一维辐射传递方程的矩阵Riccati方程解","authors":"B. Ganapol, J. Patel","doi":"10.1080/23324309.2020.1816553","DOIUrl":null,"url":null,"abstract":"Abstract In recent years, the first author has developed three successful numerical methods to solve the 1D radiative transport equation yielding highly precise benchmarks. The second author has shown a keen interest in novel solution methodologies and an ability for their implementation. Here, we combine talents to generate yet another high precision solution, the Matrix Riccati Equation Method (MREM). MREM features the solution to two of the four matrix Riccati ODEs that arise from the interaction principle of particle transport. Through interaction coefficients, the interaction principle describes how particles reflect from- and transmit through- a single slab. On combination with Taylor series and doubling, a high-quality numerical benchmark, to nearly seven places, is established.","PeriodicalId":54305,"journal":{"name":"Journal of Computational and Theoretical Transport","volume":"50 1","pages":"297 - 327"},"PeriodicalIF":0.7000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23324309.2020.1816553","citationCount":"2","resultStr":"{\"title\":\"Matrix Riccati Equation Solution of the 1D Radiative Transfer Equation\",\"authors\":\"B. Ganapol, J. Patel\",\"doi\":\"10.1080/23324309.2020.1816553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In recent years, the first author has developed three successful numerical methods to solve the 1D radiative transport equation yielding highly precise benchmarks. The second author has shown a keen interest in novel solution methodologies and an ability for their implementation. Here, we combine talents to generate yet another high precision solution, the Matrix Riccati Equation Method (MREM). MREM features the solution to two of the four matrix Riccati ODEs that arise from the interaction principle of particle transport. Through interaction coefficients, the interaction principle describes how particles reflect from- and transmit through- a single slab. On combination with Taylor series and doubling, a high-quality numerical benchmark, to nearly seven places, is established.\",\"PeriodicalId\":54305,\"journal\":{\"name\":\"Journal of Computational and Theoretical Transport\",\"volume\":\"50 1\",\"pages\":\"297 - 327\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23324309.2020.1816553\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Theoretical Transport\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/23324309.2020.1816553\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23324309.2020.1816553","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

摘要近年来,第一作者开发了三种成功的数值方法来求解一维辐射输运方程,产生了高精度的基准。第二位作者对新颖的解决方案方法及其实现能力表现出了浓厚的兴趣。在这里,我们结合人才生成了另一个高精度的解决方案,矩阵Riccati方程方法(MREM)。MREM的特点是求解由粒子输运的相互作用原理产生的四个矩阵Riccati常微分方程中的两个。通过相互作用系数,相互作用原理描述了粒子如何从单个平板反射和透射。结合泰勒级数和加倍,建立了一个高质量的数值基准,达到近七位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix Riccati Equation Solution of the 1D Radiative Transfer Equation
Abstract In recent years, the first author has developed three successful numerical methods to solve the 1D radiative transport equation yielding highly precise benchmarks. The second author has shown a keen interest in novel solution methodologies and an ability for their implementation. Here, we combine talents to generate yet another high precision solution, the Matrix Riccati Equation Method (MREM). MREM features the solution to two of the four matrix Riccati ODEs that arise from the interaction principle of particle transport. Through interaction coefficients, the interaction principle describes how particles reflect from- and transmit through- a single slab. On combination with Taylor series and doubling, a high-quality numerical benchmark, to nearly seven places, is established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational and Theoretical Transport
Journal of Computational and Theoretical Transport Mathematics-Mathematical Physics
CiteScore
1.30
自引率
0.00%
发文量
15
期刊介绍: Emphasizing computational methods and theoretical studies, this unique journal invites articles on neutral-particle transport, kinetic theory, radiative transfer, charged-particle transport, and macroscopic transport phenomena. In addition, the journal encourages articles on uncertainty quantification related to these fields. Offering a range of information and research methodologies unavailable elsewhere, Journal of Computational and Theoretical Transport brings together closely related mathematical concepts and techniques to encourage a productive, interdisciplinary exchange of ideas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信