泥浆马达反向驱动动力学的测量、相关风险以及实时检测和缓解措施的好处

IF 1.3 4区 工程技术 Q3 ENGINEERING, PETROLEUM
J. Sugiura, Steve Jones
{"title":"泥浆马达反向驱动动力学的测量、相关风险以及实时检测和缓解措施的好处","authors":"J. Sugiura, Steve Jones","doi":"10.2118/204032-PA","DOIUrl":null,"url":null,"abstract":"\n North American shale drilling is a fast-paced environment where downhole drilling equipment is pushed to the limits for the maximum rate of penetration (ROP). Downhole mud motor power sections have rapidly advanced to deliver more horsepower and torque, resulting in different downhole dynamics that have not been identified in the past.\n High-frequency (HF) compact drilling dynamics recorders embedded in the drill bit, mud motor bit box, and motor top subassembly (top-sub) provide unique measurements to fully understand the reaction of the steerable-motor power section under load relative to the type of rock being drilled. Three-axis shock, gyro, and temperature sensors placed above and below the power section measure the dynamic response of power transfer to the bit and associated losses caused by back-drive dynamics. Detection of back-drive from surface measurements is not possible, and many measurement-while-drilling (MWD) systems do not have the measurement capability to identify the problem. Motor back-drive dynamics severity is dependent on many factors, including formation type, bit type, power section, weight on bit, and drillpipe size. The torsional energy stored and released in the drillstring can be high because of the interaction between surface rotation speed/torque output and mud motor downhole rotation speed/torque. Torsional drillstring energy wind-up and release results in variable power output at the bit, inconsistent rate of penetration, rapid fatigue on downhole equipment, and motor or drillstring backoffs and twistoffs.\n A new mechanism of motor back-drive dynamics caused by the use of an MWD pulser above a steerable motor has been discovered. HF continuous gyro sensors and pressure sensors were deployed to capture the mechanism in which a positive mud pulser reduces as much as one-third of the mud flow in the motor and bit rotation speed, creating a propensity for a bit to come to a complete stop in certain conditions and for the motor to rotate the drillstring backward. We have observed the backward rotation of a polycrystalline diamond compact (PDC) drill bit during severe stick-slip and back-drive events (−50 rev/min above the motor), confirming that the bit rotated backward for 9 milliseconds (ms) every 133.3 ms (at 7.5 Hz), using a 1,000-Hz continuous sampling/recording in-bit gyro. In one field test, multiple drillstring dynamics recorders were used to measure the motor back-drive severity along the drillstring. It was discovered that the back-drive dynamics are worse at the drillstring, approximately 1,110 ft behind the bit, than these measured at the motor top-sub position. These dynamics caused drillstring backoffs and twistoffs in a particular field. A motor back-drive mitigation tool was used in the field to compare the runs with and without the mitigation tool while keeping the surface drilling parameters nearly the same. The downhole drilling dynamics sensors were used to confirm that the mitigation tool significantly reduced stick-slip and eliminated the motor back-drive dynamics in the same depth interval.\n Detailed analysis of the HF embedded downhole sensor data provides an in-depth understanding of mud motor back-drive dynamics. The cause, severity, reduction in drilling performance and risk of incident can be identified, allowing performance and cost gains to be realized. This paper will detail the advantages to understanding and reducing motor back-drive dynamics, a topic that has not commonly been discussed in the past.","PeriodicalId":51165,"journal":{"name":"SPE Drilling & Completion","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Measurement of Mud Motor Back-Drive Dynamics, Associated Risks, and Benefits of Real-Time Detection and Mitigation Measures\",\"authors\":\"J. Sugiura, Steve Jones\",\"doi\":\"10.2118/204032-PA\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n North American shale drilling is a fast-paced environment where downhole drilling equipment is pushed to the limits for the maximum rate of penetration (ROP). Downhole mud motor power sections have rapidly advanced to deliver more horsepower and torque, resulting in different downhole dynamics that have not been identified in the past.\\n High-frequency (HF) compact drilling dynamics recorders embedded in the drill bit, mud motor bit box, and motor top subassembly (top-sub) provide unique measurements to fully understand the reaction of the steerable-motor power section under load relative to the type of rock being drilled. Three-axis shock, gyro, and temperature sensors placed above and below the power section measure the dynamic response of power transfer to the bit and associated losses caused by back-drive dynamics. Detection of back-drive from surface measurements is not possible, and many measurement-while-drilling (MWD) systems do not have the measurement capability to identify the problem. Motor back-drive dynamics severity is dependent on many factors, including formation type, bit type, power section, weight on bit, and drillpipe size. The torsional energy stored and released in the drillstring can be high because of the interaction between surface rotation speed/torque output and mud motor downhole rotation speed/torque. Torsional drillstring energy wind-up and release results in variable power output at the bit, inconsistent rate of penetration, rapid fatigue on downhole equipment, and motor or drillstring backoffs and twistoffs.\\n A new mechanism of motor back-drive dynamics caused by the use of an MWD pulser above a steerable motor has been discovered. HF continuous gyro sensors and pressure sensors were deployed to capture the mechanism in which a positive mud pulser reduces as much as one-third of the mud flow in the motor and bit rotation speed, creating a propensity for a bit to come to a complete stop in certain conditions and for the motor to rotate the drillstring backward. We have observed the backward rotation of a polycrystalline diamond compact (PDC) drill bit during severe stick-slip and back-drive events (−50 rev/min above the motor), confirming that the bit rotated backward for 9 milliseconds (ms) every 133.3 ms (at 7.5 Hz), using a 1,000-Hz continuous sampling/recording in-bit gyro. In one field test, multiple drillstring dynamics recorders were used to measure the motor back-drive severity along the drillstring. It was discovered that the back-drive dynamics are worse at the drillstring, approximately 1,110 ft behind the bit, than these measured at the motor top-sub position. These dynamics caused drillstring backoffs and twistoffs in a particular field. A motor back-drive mitigation tool was used in the field to compare the runs with and without the mitigation tool while keeping the surface drilling parameters nearly the same. The downhole drilling dynamics sensors were used to confirm that the mitigation tool significantly reduced stick-slip and eliminated the motor back-drive dynamics in the same depth interval.\\n Detailed analysis of the HF embedded downhole sensor data provides an in-depth understanding of mud motor back-drive dynamics. The cause, severity, reduction in drilling performance and risk of incident can be identified, allowing performance and cost gains to be realized. This paper will detail the advantages to understanding and reducing motor back-drive dynamics, a topic that has not commonly been discussed in the past.\",\"PeriodicalId\":51165,\"journal\":{\"name\":\"SPE Drilling & Completion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Drilling & Completion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/204032-PA\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Drilling & Completion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/204032-PA","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 4

摘要

北美页岩钻井是一个快节奏的环境,井下钻井设备被推到最大钻速(ROP)的极限。井下泥浆马达动力部分已迅速推进,以提供更多的马力和扭矩,从而产生了过去未发现的不同井下动力学。嵌入钻头、泥浆马达钻头盒和马达顶部组件(顶部接头)中的高频(HF)紧凑型钻井动态记录仪提供了独特的测量,以充分了解可操纵马达动力段在负载下相对于所钻岩石类型的反应。放置在功率段上方和下方的三轴冲击、陀螺仪和温度传感器测量功率传输到钻头的动态响应以及由后驱动力引起的相关损失。从表面测量中检测反向驱动是不可能的,并且许多随钻测量(MWD)系统不具有识别问题的测量能力。马达反驱动动力学的严重程度取决于许多因素,包括地层类型、钻头类型、功率段、钻头重量和钻杆尺寸。由于地面转速/扭矩输出与泥浆马达井下转速/扭矩之间的相互作用,储存和释放在钻柱中的扭转能量可能很高。扭转钻柱能量的卷起和释放导致钻头的功率输出可变、穿透率不一致、井下设备快速疲劳以及电机或钻柱后退和扭转。发现了一种由在可转向电机上方使用MWD脉冲发生器引起的电机反向驱动动力学的新机制。HF连续陀螺仪传感器和压力传感器被部署来捕捉这样一种机制,即正泥浆脉冲发生器减少了马达中多达三分之一的泥浆流量和钻头转速,从而使钻头在某些条件下完全停止,并使马达向后旋转钻柱。我们观察到,在严重的粘滑和反向驱动事件中(电机上方−50转/分钟),聚晶金刚石钻头向后旋转,证实钻头每133.3毫秒(7.5 Hz),使用1000Hz连续采样/记录在位陀螺仪。在一次现场测试中,使用了多个钻柱动力学记录仪来测量沿钻柱的电机反驱动严重程度。研究发现,钻柱的反向驱动动力学较差,约为1110 ft,比在电机顶部子位置测得的要高。这些动力学导致特定油田的钻柱后退和扭曲。现场使用了电机反驱动缓解工具来比较有缓解工具和没有缓解工具的运行情况,同时保持地面钻井参数几乎相同。井下钻井动力学传感器用于确认缓解工具在相同深度段内显著减少了粘滑并消除了电机反向驱动动力学。HF嵌入式井下传感器数据的详细分析提供了对泥浆马达反向驱动动力学的深入理解。可以确定原因、严重程度、钻井性能降低和事故风险,从而实现性能和成本收益。本文将详细介绍理解和减少电机反向驱动动力学的优势,这是一个过去不常讨论的话题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement of Mud Motor Back-Drive Dynamics, Associated Risks, and Benefits of Real-Time Detection and Mitigation Measures
North American shale drilling is a fast-paced environment where downhole drilling equipment is pushed to the limits for the maximum rate of penetration (ROP). Downhole mud motor power sections have rapidly advanced to deliver more horsepower and torque, resulting in different downhole dynamics that have not been identified in the past. High-frequency (HF) compact drilling dynamics recorders embedded in the drill bit, mud motor bit box, and motor top subassembly (top-sub) provide unique measurements to fully understand the reaction of the steerable-motor power section under load relative to the type of rock being drilled. Three-axis shock, gyro, and temperature sensors placed above and below the power section measure the dynamic response of power transfer to the bit and associated losses caused by back-drive dynamics. Detection of back-drive from surface measurements is not possible, and many measurement-while-drilling (MWD) systems do not have the measurement capability to identify the problem. Motor back-drive dynamics severity is dependent on many factors, including formation type, bit type, power section, weight on bit, and drillpipe size. The torsional energy stored and released in the drillstring can be high because of the interaction between surface rotation speed/torque output and mud motor downhole rotation speed/torque. Torsional drillstring energy wind-up and release results in variable power output at the bit, inconsistent rate of penetration, rapid fatigue on downhole equipment, and motor or drillstring backoffs and twistoffs. A new mechanism of motor back-drive dynamics caused by the use of an MWD pulser above a steerable motor has been discovered. HF continuous gyro sensors and pressure sensors were deployed to capture the mechanism in which a positive mud pulser reduces as much as one-third of the mud flow in the motor and bit rotation speed, creating a propensity for a bit to come to a complete stop in certain conditions and for the motor to rotate the drillstring backward. We have observed the backward rotation of a polycrystalline diamond compact (PDC) drill bit during severe stick-slip and back-drive events (−50 rev/min above the motor), confirming that the bit rotated backward for 9 milliseconds (ms) every 133.3 ms (at 7.5 Hz), using a 1,000-Hz continuous sampling/recording in-bit gyro. In one field test, multiple drillstring dynamics recorders were used to measure the motor back-drive severity along the drillstring. It was discovered that the back-drive dynamics are worse at the drillstring, approximately 1,110 ft behind the bit, than these measured at the motor top-sub position. These dynamics caused drillstring backoffs and twistoffs in a particular field. A motor back-drive mitigation tool was used in the field to compare the runs with and without the mitigation tool while keeping the surface drilling parameters nearly the same. The downhole drilling dynamics sensors were used to confirm that the mitigation tool significantly reduced stick-slip and eliminated the motor back-drive dynamics in the same depth interval. Detailed analysis of the HF embedded downhole sensor data provides an in-depth understanding of mud motor back-drive dynamics. The cause, severity, reduction in drilling performance and risk of incident can be identified, allowing performance and cost gains to be realized. This paper will detail the advantages to understanding and reducing motor back-drive dynamics, a topic that has not commonly been discussed in the past.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SPE Drilling & Completion
SPE Drilling & Completion 工程技术-工程:石油
CiteScore
4.20
自引率
7.10%
发文量
29
审稿时长
6-12 weeks
期刊介绍: Covers horizontal and directional drilling, drilling fluids, bit technology, sand control, perforating, cementing, well control, completions and drilling operations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信