{"title":"稳定扭结和亚稳态扭结反扭结解决方案","authors":"C. Halcrow, E. Babaev","doi":"10.3842/SIGMA.2023.034","DOIUrl":null,"url":null,"abstract":"We construct and study two kink theories. One contains a static 2-kink configuration with controllable binding energy. The other contains a locally stable non-topological solution, which we call a lavion. The new models are 1D analogs of non-integrable systems in higher dimensions such as the Skyrme model and realistic vortex systems. To help construct the theories, we derive a simple expression for the interaction energy between two kinks.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Stable Kink-Kink and Metastable Kink-Antikink Solutions\",\"authors\":\"C. Halcrow, E. Babaev\",\"doi\":\"10.3842/SIGMA.2023.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct and study two kink theories. One contains a static 2-kink configuration with controllable binding energy. The other contains a locally stable non-topological solution, which we call a lavion. The new models are 1D analogs of non-integrable systems in higher dimensions such as the Skyrme model and realistic vortex systems. To help construct the theories, we derive a simple expression for the interaction energy between two kinks.\",\"PeriodicalId\":49453,\"journal\":{\"name\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3842/SIGMA.2023.034\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/SIGMA.2023.034","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Stable Kink-Kink and Metastable Kink-Antikink Solutions
We construct and study two kink theories. One contains a static 2-kink configuration with controllable binding energy. The other contains a locally stable non-topological solution, which we call a lavion. The new models are 1D analogs of non-integrable systems in higher dimensions such as the Skyrme model and realistic vortex systems. To help construct the theories, we derive a simple expression for the interaction energy between two kinks.
期刊介绍:
Scope
Geometrical methods in mathematical physics
Lie theory and differential equations
Classical and quantum integrable systems
Algebraic methods in dynamical systems and chaos
Exactly and quasi-exactly solvable models
Lie groups and algebras, representation theory
Orthogonal polynomials and special functions
Integrable probability and stochastic processes
Quantum algebras, quantum groups and their representations
Symplectic, Poisson and noncommutative geometry
Algebraic geometry and its applications
Quantum field theories and string/gauge theories
Statistical physics and condensed matter physics
Quantum gravity and cosmology.