使用硼酸锂熔融玻璃对大块地质样品进行LA-ICP-MS分析时多种外标和内标的联合使用

IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
R. Conrey, D. G. Bailey, J. Singer, L. Wagoner, B. Parfitt, J. Hay, O. Keh, Z. Chang, S. Huang
{"title":"使用硼酸锂熔融玻璃对大块地质样品进行LA-ICP-MS分析时多种外标和内标的联合使用","authors":"R. Conrey, D. G. Bailey, J. Singer, L. Wagoner, B. Parfitt, J. Hay, O. Keh, Z. Chang, S. Huang","doi":"10.1144/geochem2023-001","DOIUrl":null,"url":null,"abstract":"\n We describe a method for LA-ICP-MS elemental analysis of geological materials using low-dilution Li-borate fused glass WDXRF pellets, with samples, drift monitor, and 18 reference materials (RMs) identically prepared. After analysis for 46 elements by WDXRF, LA-ICP-MS intensities from samples and RMs are collected, and background corrected with\n Iolite\n software.\n HALite\n , a new software application, was developed to derive the elemental compositions from the LA-ICP-MS net signals. In\n HALite\n , elements are drift corrected using polynomial functions, and flux-fused RM element sensitivities are calculated from known mass fractions. Multiple internal standard (IS) elements are used to model each sample's laser response. Analyte mass fractions in unknowns are determined using the calibrated sensitivity correlation models for multiple IS elements. Either the WDXRF mass fractions or the initial round of calculated LA-ICP-MS mass fractions are used to calculate weighted mean sensitivities. Validation experiments with flux-fused RMs run as unknowns yield results with less than 5-10% total relative uncertainty for most analytes. We derive equations which allow calculation of the precision and total uncertainty as a function of mass fraction for each analyte element.\n \n \n Supplementary materials:\n Table 1 - RMs used; Table 2 - Operating parameters; Table 3 - Model vs. accepted mass fractions; Table 4 - NIST 610 vs. multiple IS models; Table 5 - Fitting parameters; Appendix 1 - HALite description; Appendix A - Summary calibration graphs; Appendix B - Validation results; Appendix C - WDXRF comparisons; Appendix D - Repeatability uncertainties; Appendix E - RM uncertainties; Appendix F - Total uncertainties for this article are available at\n https://doi.org/10.6084/m9.figshare.c.6639885\n","PeriodicalId":55114,"journal":{"name":"Geochemistry-Exploration Environment Analysis","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Combined use of multiple external and internal standards in LA-ICP-MS analysis of bulk geological samples using lithium borate fused glass\",\"authors\":\"R. Conrey, D. G. Bailey, J. Singer, L. Wagoner, B. Parfitt, J. Hay, O. Keh, Z. Chang, S. Huang\",\"doi\":\"10.1144/geochem2023-001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We describe a method for LA-ICP-MS elemental analysis of geological materials using low-dilution Li-borate fused glass WDXRF pellets, with samples, drift monitor, and 18 reference materials (RMs) identically prepared. After analysis for 46 elements by WDXRF, LA-ICP-MS intensities from samples and RMs are collected, and background corrected with\\n Iolite\\n software.\\n HALite\\n , a new software application, was developed to derive the elemental compositions from the LA-ICP-MS net signals. In\\n HALite\\n , elements are drift corrected using polynomial functions, and flux-fused RM element sensitivities are calculated from known mass fractions. Multiple internal standard (IS) elements are used to model each sample's laser response. Analyte mass fractions in unknowns are determined using the calibrated sensitivity correlation models for multiple IS elements. Either the WDXRF mass fractions or the initial round of calculated LA-ICP-MS mass fractions are used to calculate weighted mean sensitivities. Validation experiments with flux-fused RMs run as unknowns yield results with less than 5-10% total relative uncertainty for most analytes. We derive equations which allow calculation of the precision and total uncertainty as a function of mass fraction for each analyte element.\\n \\n \\n Supplementary materials:\\n Table 1 - RMs used; Table 2 - Operating parameters; Table 3 - Model vs. accepted mass fractions; Table 4 - NIST 610 vs. multiple IS models; Table 5 - Fitting parameters; Appendix 1 - HALite description; Appendix A - Summary calibration graphs; Appendix B - Validation results; Appendix C - WDXRF comparisons; Appendix D - Repeatability uncertainties; Appendix E - RM uncertainties; Appendix F - Total uncertainties for this article are available at\\n https://doi.org/10.6084/m9.figshare.c.6639885\\n\",\"PeriodicalId\":55114,\"journal\":{\"name\":\"Geochemistry-Exploration Environment Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry-Exploration Environment Analysis\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/geochem2023-001\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry-Exploration Environment Analysis","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/geochem2023-001","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 2

摘要

我们描述了一种使用低稀释硼酸锂熔融玻璃WDXRF颗粒对地质材料进行LA-ICP-MS元素分析的方法,其中样品、漂移监测器和18种参考材料(RM)是相同制备的。通过WDXRF分析46种元素后,收集样品和RM的LA-ICP-MS强度,并用Iolite软件校正背景。HALite是一种新的软件应用程序,用于从LA-ICP-MS网络信号中推导元素组成。在HALite中,使用多项式函数对元素进行漂移校正,并根据已知的质量分数计算通量融合的RM元素灵敏度。使用多个内部标准(IS)元件对每个样品的激光响应进行建模。使用多个IS元素的校准灵敏度相关性模型来确定未知的分析物质量分数。WDXRF质量分数或第一轮计算的LA-ICP-MS质量分数用于计算加权平均灵敏度。通量融合RMs作为未知数运行的验证实验产生的结果对大多数分析物的总相对不确定度小于5-10%。我们推导出的方程允许计算作为每个分析物元素质量分数函数的精度和总不确定度。补充材料:表1-使用的RM;表2——操作参数;表3-模型与可接受的质量分数;表4-NIST 610与多个IS模型的对比;表5——拟合参数;附录1——HALite说明;附录A——校准图表摘要;附录B——验证结果;附录C——WDXRF比较;附录D——重复性不确定性;附录E——RM不确定性;附录F-本文的总不确定性可在https://doi.org/10.6084/m9.figshare.c.6639885
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined use of multiple external and internal standards in LA-ICP-MS analysis of bulk geological samples using lithium borate fused glass
We describe a method for LA-ICP-MS elemental analysis of geological materials using low-dilution Li-borate fused glass WDXRF pellets, with samples, drift monitor, and 18 reference materials (RMs) identically prepared. After analysis for 46 elements by WDXRF, LA-ICP-MS intensities from samples and RMs are collected, and background corrected with Iolite software. HALite , a new software application, was developed to derive the elemental compositions from the LA-ICP-MS net signals. In HALite , elements are drift corrected using polynomial functions, and flux-fused RM element sensitivities are calculated from known mass fractions. Multiple internal standard (IS) elements are used to model each sample's laser response. Analyte mass fractions in unknowns are determined using the calibrated sensitivity correlation models for multiple IS elements. Either the WDXRF mass fractions or the initial round of calculated LA-ICP-MS mass fractions are used to calculate weighted mean sensitivities. Validation experiments with flux-fused RMs run as unknowns yield results with less than 5-10% total relative uncertainty for most analytes. We derive equations which allow calculation of the precision and total uncertainty as a function of mass fraction for each analyte element. Supplementary materials: Table 1 - RMs used; Table 2 - Operating parameters; Table 3 - Model vs. accepted mass fractions; Table 4 - NIST 610 vs. multiple IS models; Table 5 - Fitting parameters; Appendix 1 - HALite description; Appendix A - Summary calibration graphs; Appendix B - Validation results; Appendix C - WDXRF comparisons; Appendix D - Repeatability uncertainties; Appendix E - RM uncertainties; Appendix F - Total uncertainties for this article are available at https://doi.org/10.6084/m9.figshare.c.6639885
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry-Exploration Environment Analysis
Geochemistry-Exploration Environment Analysis 地学-地球化学与地球物理
CiteScore
3.60
自引率
16.70%
发文量
30
审稿时长
1 months
期刊介绍: Geochemistry: Exploration, Environment, Analysis (GEEA) is a co-owned journal of the Geological Society of London and the Association of Applied Geochemists (AAG). GEEA focuses on mineral exploration using geochemistry; related fields also covered include geoanalysis, the development of methods and techniques used to analyse geochemical materials such as rocks, soils, sediments, waters and vegetation, and environmental issues associated with mining and source apportionment. GEEA is well-known for its thematic sets on hot topics and regularly publishes papers from the biennial International Applied Geochemistry Symposium (IAGS). Papers that seek to integrate geological, geochemical and geophysical methods of exploration are particularly welcome, as are those that concern geochemical mapping and those that comprise case histories. Given the many links between exploration and environmental geochemistry, the journal encourages the exchange of concepts and data; in particular, to differentiate various sources of elements. GEEA publishes research articles; discussion papers; book reviews; editorial content and thematic sets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信