{"title":"大集合的离散和积","authors":"Chang-Pao Chen","doi":"10.2140/moscow.2020.9.17","DOIUrl":null,"url":null,"abstract":"Let $A\\subset [1, 2]$ be a $(\\delta, \\sigma)$-set with measure $|A|=\\delta^{1-\\sigma}$ in the sense of Katz and Tao. For $\\sigma\\in (1/2, 1)$ we show that $$ |A+A|+|AA|\\gtrapprox \\delta^{-c}|A|, $$ for $c=\\frac{(1-\\sigma)(2\\sigma-1)}{6\\sigma+4}$. This improves the bound of Guth, Katz, and Zahl for large $\\sigma$.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/moscow.2020.9.17","citationCount":"5","resultStr":"{\"title\":\"Discretized sum-product for large sets\",\"authors\":\"Chang-Pao Chen\",\"doi\":\"10.2140/moscow.2020.9.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $A\\\\subset [1, 2]$ be a $(\\\\delta, \\\\sigma)$-set with measure $|A|=\\\\delta^{1-\\\\sigma}$ in the sense of Katz and Tao. For $\\\\sigma\\\\in (1/2, 1)$ we show that $$ |A+A|+|AA|\\\\gtrapprox \\\\delta^{-c}|A|, $$ for $c=\\\\frac{(1-\\\\sigma)(2\\\\sigma-1)}{6\\\\sigma+4}$. This improves the bound of Guth, Katz, and Zahl for large $\\\\sigma$.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/moscow.2020.9.17\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2020.9.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2020.9.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Let $A\subset [1, 2]$ be a $(\delta, \sigma)$-set with measure $|A|=\delta^{1-\sigma}$ in the sense of Katz and Tao. For $\sigma\in (1/2, 1)$ we show that $$ |A+A|+|AA|\gtrapprox \delta^{-c}|A|, $$ for $c=\frac{(1-\sigma)(2\sigma-1)}{6\sigma+4}$. This improves the bound of Guth, Katz, and Zahl for large $\sigma$.