βN和*N中的可除性

IF 0.2 4区 数学 Q4 LOGIC
Boris Šobot
{"title":"βN和*N中的可除性","authors":"Boris Šobot","doi":"10.4467/20842589rm.19.003.10651","DOIUrl":null,"url":null,"abstract":"The paper first covers several properties of the extension of the divisibility relation to a set *N of nonstandard integers, including an analogue of the basic theorem of arithmetic. After that, a connection is established with the divisibility in the Stone–Cech compactification βN, proving that the divisibility of ultrafilters introduced by the author is equivalent to divisibility of some elements belonging to their respective monads in an enlargement. Some earlier results on ultrafilters on lower levels on the divisibility hierarchy are illuminated by nonstandard methods. Using limits by ultrafilters we obtain results on ultrafilters above these finite levels, showing that for them a distribution by levels is not possible. \nReceived 16 July 2018 \nAMS subject classification: Primary 54D80; Secondary 11U10, 03H15, 54D35 \n \nKeywords: divisibility, nonstandard integer, Stone-Cech compactification, ultrafilter","PeriodicalId":48992,"journal":{"name":"Reports on Mathematical Logic","volume":"1 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Divisibility in beta N and *N\",\"authors\":\"Boris Šobot\",\"doi\":\"10.4467/20842589rm.19.003.10651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper first covers several properties of the extension of the divisibility relation to a set *N of nonstandard integers, including an analogue of the basic theorem of arithmetic. After that, a connection is established with the divisibility in the Stone–Cech compactification βN, proving that the divisibility of ultrafilters introduced by the author is equivalent to divisibility of some elements belonging to their respective monads in an enlargement. Some earlier results on ultrafilters on lower levels on the divisibility hierarchy are illuminated by nonstandard methods. Using limits by ultrafilters we obtain results on ultrafilters above these finite levels, showing that for them a distribution by levels is not possible. \\nReceived 16 July 2018 \\nAMS subject classification: Primary 54D80; Secondary 11U10, 03H15, 54D35 \\n \\nKeywords: divisibility, nonstandard integer, Stone-Cech compactification, ultrafilter\",\"PeriodicalId\":48992,\"journal\":{\"name\":\"Reports on Mathematical Logic\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2019-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4467/20842589rm.19.003.10651\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4467/20842589rm.19.003.10651","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 1

摘要

本文首先讨论了非标准整数集*N的整除关系的可拓的几个性质,包括算术基本定理的一个类似性质。之后,与Stone–Cech紧化中的可整除性βN建立了联系,证明了作者引入的超滤子的可整性等价于一些元素在放大中属于它们各自的单元的可整整除性。非标准方法阐明了在可分性层次的较低级别上的超滤子的一些早期结果。使用超滤器的极限,我们获得了在这些有限水平之上的超滤器的结果,表明对它们来说,按水平分布是不可能的。2018年7月16日接受AMS受试者分类:初级54D80;仲11U10,03H15,54D35关键词:可分性,非标准整数,Stone-Cech紧化,超滤
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Divisibility in beta N and *N
The paper first covers several properties of the extension of the divisibility relation to a set *N of nonstandard integers, including an analogue of the basic theorem of arithmetic. After that, a connection is established with the divisibility in the Stone–Cech compactification βN, proving that the divisibility of ultrafilters introduced by the author is equivalent to divisibility of some elements belonging to their respective monads in an enlargement. Some earlier results on ultrafilters on lower levels on the divisibility hierarchy are illuminated by nonstandard methods. Using limits by ultrafilters we obtain results on ultrafilters above these finite levels, showing that for them a distribution by levels is not possible. Received 16 July 2018 AMS subject classification: Primary 54D80; Secondary 11U10, 03H15, 54D35 Keywords: divisibility, nonstandard integer, Stone-Cech compactification, ultrafilter
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports on Mathematical Logic
Reports on Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.60
自引率
0.00%
发文量
0
期刊介绍: Reports on Mathematical Logic is a journal aimed at publishing quality research papers on mathematical logic and foundations of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信