{"title":"基于rbf的非稀纤维悬浮液宏微观多尺度模拟","authors":"Hung Quoc Nguyen, Canh-Dung Tran","doi":"10.1007/s13367-022-00022-1","DOIUrl":null,"url":null,"abstract":"<div><p>The multiscale stochastic simulation method based on the marriage of the Brownian Configuration Field (BCF) and the Radial Basis Function mesh-free approximation for dilute fibre suspensions by our group, is further developed to simulate non-dilute fibre suspensions. For the present approach, the macro and micro processes proceeded at each time step are linked to each other by a fibre contributed stress formula associated with the used kinetic model. Due to the feature of non-dilute fibre suspensions, the interaction between fibres is introduced into the evolution equation to determine fibre configurations using the BCF method. The fibre stresses are then determined based on the fibre configuration fields using the Phan–Thien–Graham model. The efficiency of the simulation method is demonstrated by the analysis of the two challenging problems, the axisymmetric contraction and expansion flows, for a range of the fibre concentration from semi-dilute to concentrated regimes. Results evidenced by numerical experiments show that the present method would be potential in analysing and simulating various suspensions in food and medical industries.</p></div>","PeriodicalId":683,"journal":{"name":"Korea-Australia Rheology Journal","volume":"34 1","pages":"1 - 15"},"PeriodicalIF":2.2000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13367-022-00022-1.pdf","citationCount":"1","resultStr":"{\"title\":\"Simulation of non-dilute fibre suspensions using RBF-based macro–micro multiscale method\",\"authors\":\"Hung Quoc Nguyen, Canh-Dung Tran\",\"doi\":\"10.1007/s13367-022-00022-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The multiscale stochastic simulation method based on the marriage of the Brownian Configuration Field (BCF) and the Radial Basis Function mesh-free approximation for dilute fibre suspensions by our group, is further developed to simulate non-dilute fibre suspensions. For the present approach, the macro and micro processes proceeded at each time step are linked to each other by a fibre contributed stress formula associated with the used kinetic model. Due to the feature of non-dilute fibre suspensions, the interaction between fibres is introduced into the evolution equation to determine fibre configurations using the BCF method. The fibre stresses are then determined based on the fibre configuration fields using the Phan–Thien–Graham model. The efficiency of the simulation method is demonstrated by the analysis of the two challenging problems, the axisymmetric contraction and expansion flows, for a range of the fibre concentration from semi-dilute to concentrated regimes. Results evidenced by numerical experiments show that the present method would be potential in analysing and simulating various suspensions in food and medical industries.</p></div>\",\"PeriodicalId\":683,\"journal\":{\"name\":\"Korea-Australia Rheology Journal\",\"volume\":\"34 1\",\"pages\":\"1 - 15\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13367-022-00022-1.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korea-Australia Rheology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13367-022-00022-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korea-Australia Rheology Journal","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13367-022-00022-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Simulation of non-dilute fibre suspensions using RBF-based macro–micro multiscale method
The multiscale stochastic simulation method based on the marriage of the Brownian Configuration Field (BCF) and the Radial Basis Function mesh-free approximation for dilute fibre suspensions by our group, is further developed to simulate non-dilute fibre suspensions. For the present approach, the macro and micro processes proceeded at each time step are linked to each other by a fibre contributed stress formula associated with the used kinetic model. Due to the feature of non-dilute fibre suspensions, the interaction between fibres is introduced into the evolution equation to determine fibre configurations using the BCF method. The fibre stresses are then determined based on the fibre configuration fields using the Phan–Thien–Graham model. The efficiency of the simulation method is demonstrated by the analysis of the two challenging problems, the axisymmetric contraction and expansion flows, for a range of the fibre concentration from semi-dilute to concentrated regimes. Results evidenced by numerical experiments show that the present method would be potential in analysing and simulating various suspensions in food and medical industries.
期刊介绍:
The Korea-Australia Rheology Journal is devoted to fundamental and applied research with immediate or potential value in rheology, covering the science of the deformation and flow of materials. Emphases are placed on experimental and numerical advances in the areas of complex fluids. The journal offers insight into characterization and understanding of technologically important materials with a wide range of practical applications.