总$T$-小高度的adic函数

IF 0.6 4区 数学 Q3 MATHEMATICS
X. Faber, Clayton Petsche
{"title":"总$T$-小高度的adic函数","authors":"X. Faber, Clayton Petsche","doi":"10.4171/RLM/911","DOIUrl":null,"url":null,"abstract":"Let $\\mathbb{F}_q(T)$ be the field of rational functions in one variable over a finite field. We introduce the notion of a totally $T$-adic function: one that is algebraic over $\\mathbb{F}_q(T)$ and whose minimal polynomial splits completely over the completion $\\mathbb{F}_q(\\!(T)\\!)$. We give two proofs that the height of a nonconstant totally $T$-adic function is bounded away from zero, each of which provides a sharp lower bound. We spend the majority of the paper providing explicit constructions of totally $T$-adic functions of small height (via arithmetic dynamics) and minimum height (via geometry and computer search). We also execute a large computer search that proves certain kinds of totally $T$-adic functions of minimum height over $\\mathbb{F}_2(T)$ do not exist. The problem of whether there exist infinitely many totally $T$-adic functions of minimum positive height over $\\mathbb{F}_q(T)$ remains open. Finally, we consider analogues of these notions under additional integrality hypotheses.","PeriodicalId":54497,"journal":{"name":"Rendiconti Lincei-Matematica e Applicazioni","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Totally $T$-adic functions of small height\",\"authors\":\"X. Faber, Clayton Petsche\",\"doi\":\"10.4171/RLM/911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathbb{F}_q(T)$ be the field of rational functions in one variable over a finite field. We introduce the notion of a totally $T$-adic function: one that is algebraic over $\\\\mathbb{F}_q(T)$ and whose minimal polynomial splits completely over the completion $\\\\mathbb{F}_q(\\\\!(T)\\\\!)$. We give two proofs that the height of a nonconstant totally $T$-adic function is bounded away from zero, each of which provides a sharp lower bound. We spend the majority of the paper providing explicit constructions of totally $T$-adic functions of small height (via arithmetic dynamics) and minimum height (via geometry and computer search). We also execute a large computer search that proves certain kinds of totally $T$-adic functions of minimum height over $\\\\mathbb{F}_2(T)$ do not exist. The problem of whether there exist infinitely many totally $T$-adic functions of minimum positive height over $\\\\mathbb{F}_q(T)$ remains open. Finally, we consider analogues of these notions under additional integrality hypotheses.\",\"PeriodicalId\":54497,\"journal\":{\"name\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/RLM/911\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Matematica e Applicazioni","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/RLM/911","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让$\mathbb{F}_q(T) $是有限域上一个变量中有理函数的域。我们引入了一个完全$T$adic函数的概念:一个在$\mathbb上代数的函数{F}_q(T) $,并且其最小多项式在完备$\mathbb上完全分裂{F}_q(\!(T)\!)$。我们给出了两个证明,证明了一个非常的全$T$adic函数的高度离零有界,每一个都提供了一个尖锐的下界。我们在论文的大部分时间里提供了小高度(通过算术动力学)和最小高度(通过几何和计算机搜索)的总$T$-dic函数的显式构造。我们还执行了一个大型计算机搜索,证明了$\mathbb上最小高度的某些类型的完全$T$-adic函数{F}_2(T) $不存在。$\mathbb上是否存在无穷多个最小正高度的完全$T$-adic函数的问题{F}_q(T) $仍然开放。最后,我们在附加的完整性假设下考虑这些概念的类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Totally $T$-adic functions of small height
Let $\mathbb{F}_q(T)$ be the field of rational functions in one variable over a finite field. We introduce the notion of a totally $T$-adic function: one that is algebraic over $\mathbb{F}_q(T)$ and whose minimal polynomial splits completely over the completion $\mathbb{F}_q(\!(T)\!)$. We give two proofs that the height of a nonconstant totally $T$-adic function is bounded away from zero, each of which provides a sharp lower bound. We spend the majority of the paper providing explicit constructions of totally $T$-adic functions of small height (via arithmetic dynamics) and minimum height (via geometry and computer search). We also execute a large computer search that proves certain kinds of totally $T$-adic functions of minimum height over $\mathbb{F}_2(T)$ do not exist. The problem of whether there exist infinitely many totally $T$-adic functions of minimum positive height over $\mathbb{F}_q(T)$ remains open. Finally, we consider analogues of these notions under additional integrality hypotheses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rendiconti Lincei-Matematica e Applicazioni
Rendiconti Lincei-Matematica e Applicazioni MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.30
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal is dedicated to the publication of high-quality peer-reviewed surveys, research papers and preliminary announcements of important results from all fields of mathematics and its applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信