{"title":"关于A-超几何函数的变换","authors":"J. Forsgaard, L. Matusevich, Aleksandra Sobieska","doi":"10.1619/fesi.62.319","DOIUrl":null,"url":null,"abstract":"We propose a systematic study of transformations of $A$-hypergeometric functions. Our approach is to apply changes of variables corresponding to automorphisms of toric rings, to Euler-type integral representations of $A$-hypergeometric functions. We show that all linear $A$-hypergeometric transformations arise from symmetries of the corresponding polytope. As an application of the techniques developed here, we show that the Appell function $F_4$ does not admit a certain kind of Euler-type integral representation.","PeriodicalId":55134,"journal":{"name":"Funkcialaj Ekvacioj-Serio Internacia","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2017-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1619/fesi.62.319","citationCount":"1","resultStr":"{\"title\":\"On Transformations of A-Hypergeometric Functions\",\"authors\":\"J. Forsgaard, L. Matusevich, Aleksandra Sobieska\",\"doi\":\"10.1619/fesi.62.319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a systematic study of transformations of $A$-hypergeometric functions. Our approach is to apply changes of variables corresponding to automorphisms of toric rings, to Euler-type integral representations of $A$-hypergeometric functions. We show that all linear $A$-hypergeometric transformations arise from symmetries of the corresponding polytope. As an application of the techniques developed here, we show that the Appell function $F_4$ does not admit a certain kind of Euler-type integral representation.\",\"PeriodicalId\":55134,\"journal\":{\"name\":\"Funkcialaj Ekvacioj-Serio Internacia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1619/fesi.62.319\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Funkcialaj Ekvacioj-Serio Internacia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1619/fesi.62.319\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Funkcialaj Ekvacioj-Serio Internacia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/fesi.62.319","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We propose a systematic study of transformations of $A$-hypergeometric functions. Our approach is to apply changes of variables corresponding to automorphisms of toric rings, to Euler-type integral representations of $A$-hypergeometric functions. We show that all linear $A$-hypergeometric transformations arise from symmetries of the corresponding polytope. As an application of the techniques developed here, we show that the Appell function $F_4$ does not admit a certain kind of Euler-type integral representation.