Eisenstein-Schönemann不可约性准则的推广

Q4 Mathematics
L. El Fadil
{"title":"Eisenstein-Schönemann不可约性准则的推广","authors":"L. El Fadil","doi":"10.2478/tmmp-2023-0005","DOIUrl":null,"url":null,"abstract":"Abstract The Eisenstein criterion is a particular case of the Schönemann’s irreducibility criterion stated in 1846. In 1906, based on Newton polygon techniques, Dumas gave a generalization of the Eisenstein criterion. In this paper, we extend this last generalization. Some applications on factorization of polynomials, and prime ideal factorization will be given, too.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"83 1","pages":"51 - 60"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Generalization of Eisenstein-Schönemann’s Irreducibility Criterion\",\"authors\":\"L. El Fadil\",\"doi\":\"10.2478/tmmp-2023-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Eisenstein criterion is a particular case of the Schönemann’s irreducibility criterion stated in 1846. In 1906, based on Newton polygon techniques, Dumas gave a generalization of the Eisenstein criterion. In this paper, we extend this last generalization. Some applications on factorization of polynomials, and prime ideal factorization will be given, too.\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"83 1\",\"pages\":\"51 - 60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/tmmp-2023-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2023-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

摘要艾森斯坦准则是1846年Schönemann不可约性准则的一个特例。1906年,在牛顿多边形技术的基础上,大仲马对艾森斯坦准则进行了推广。在本文中,我们扩展了最后一个推广。给出了多项式因子分解和素数理想因子分解的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generalization of Eisenstein-Schönemann’s Irreducibility Criterion
Abstract The Eisenstein criterion is a particular case of the Schönemann’s irreducibility criterion stated in 1846. In 1906, based on Newton polygon techniques, Dumas gave a generalization of the Eisenstein criterion. In this paper, we extend this last generalization. Some applications on factorization of polynomials, and prime ideal factorization will be given, too.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信