{"title":"Eisenstein-Schönemann不可约性准则的推广","authors":"L. El Fadil","doi":"10.2478/tmmp-2023-0005","DOIUrl":null,"url":null,"abstract":"Abstract The Eisenstein criterion is a particular case of the Schönemann’s irreducibility criterion stated in 1846. In 1906, based on Newton polygon techniques, Dumas gave a generalization of the Eisenstein criterion. In this paper, we extend this last generalization. Some applications on factorization of polynomials, and prime ideal factorization will be given, too.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"83 1","pages":"51 - 60"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Generalization of Eisenstein-Schönemann’s Irreducibility Criterion\",\"authors\":\"L. El Fadil\",\"doi\":\"10.2478/tmmp-2023-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Eisenstein criterion is a particular case of the Schönemann’s irreducibility criterion stated in 1846. In 1906, based on Newton polygon techniques, Dumas gave a generalization of the Eisenstein criterion. In this paper, we extend this last generalization. Some applications on factorization of polynomials, and prime ideal factorization will be given, too.\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"83 1\",\"pages\":\"51 - 60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/tmmp-2023-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2023-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
A Generalization of Eisenstein-Schönemann’s Irreducibility Criterion
Abstract The Eisenstein criterion is a particular case of the Schönemann’s irreducibility criterion stated in 1846. In 1906, based on Newton polygon techniques, Dumas gave a generalization of the Eisenstein criterion. In this paper, we extend this last generalization. Some applications on factorization of polynomials, and prime ideal factorization will be given, too.