{"title":"妄想网络和其他社交网络中的测地周期长度分布","authors":"A. Stivala","doi":"10.21307/joss-2020-002","DOIUrl":null,"url":null,"abstract":"Abstract A recently published paper [Martin (2017) JoSS 18(1):1-21] investigates the structure of an unusual set of social networks, those of the alternate personalities described by a patient undergoing therapy for multiple personality disorder (now known as dissociative identity disorder). The structure of these networks is modeled using the dk-series, a sequence of nested network distributions of increasing complexity. Martin finds that the first of these networks contains a striking feature of a large “hollow ring”; a cycle with no shortcuts, so that the shortest path between any two nodes in the cycle is along the cycle (in more precise graph theory terms, this is a geodesic cycle). However, the subsequent networks have much smaller largest cycles, smaller than those expected by the models. In this work, I re-analyze these delusional social networks using exponential random graph models (ERGMs) and investigate the distribution of the lengths of geodesic cycles. I also conduct similar investigations for some other social networks, both fictional and empirical, and show that the geodesic cycle length distribution is a macro-level structure that can arise naturally from the micro-level processes modeled by the ERGM.","PeriodicalId":35236,"journal":{"name":"Journal of Social Structure","volume":"21 1","pages":"35 - 76"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Geodesic Cycle Length Distributions in Delusional and Other Social Networks\",\"authors\":\"A. Stivala\",\"doi\":\"10.21307/joss-2020-002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A recently published paper [Martin (2017) JoSS 18(1):1-21] investigates the structure of an unusual set of social networks, those of the alternate personalities described by a patient undergoing therapy for multiple personality disorder (now known as dissociative identity disorder). The structure of these networks is modeled using the dk-series, a sequence of nested network distributions of increasing complexity. Martin finds that the first of these networks contains a striking feature of a large “hollow ring”; a cycle with no shortcuts, so that the shortest path between any two nodes in the cycle is along the cycle (in more precise graph theory terms, this is a geodesic cycle). However, the subsequent networks have much smaller largest cycles, smaller than those expected by the models. In this work, I re-analyze these delusional social networks using exponential random graph models (ERGMs) and investigate the distribution of the lengths of geodesic cycles. I also conduct similar investigations for some other social networks, both fictional and empirical, and show that the geodesic cycle length distribution is a macro-level structure that can arise naturally from the micro-level processes modeled by the ERGM.\",\"PeriodicalId\":35236,\"journal\":{\"name\":\"Journal of Social Structure\",\"volume\":\"21 1\",\"pages\":\"35 - 76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Social Structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21307/joss-2020-002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Social Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21307/joss-2020-002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
Geodesic Cycle Length Distributions in Delusional and Other Social Networks
Abstract A recently published paper [Martin (2017) JoSS 18(1):1-21] investigates the structure of an unusual set of social networks, those of the alternate personalities described by a patient undergoing therapy for multiple personality disorder (now known as dissociative identity disorder). The structure of these networks is modeled using the dk-series, a sequence of nested network distributions of increasing complexity. Martin finds that the first of these networks contains a striking feature of a large “hollow ring”; a cycle with no shortcuts, so that the shortest path between any two nodes in the cycle is along the cycle (in more precise graph theory terms, this is a geodesic cycle). However, the subsequent networks have much smaller largest cycles, smaller than those expected by the models. In this work, I re-analyze these delusional social networks using exponential random graph models (ERGMs) and investigate the distribution of the lengths of geodesic cycles. I also conduct similar investigations for some other social networks, both fictional and empirical, and show that the geodesic cycle length distribution is a macro-level structure that can arise naturally from the micro-level processes modeled by the ERGM.