{"title":"Box-Behnken设计优化Ureolysic酵母Spathospora sp.NN04微生物诱导方解石沉淀的工艺:一种新的生物胶结方法","authors":"Nupur Ojha, Pooja Aich, N. Das","doi":"10.30491/JABR.2020.245335.1278","DOIUrl":null,"url":null,"abstract":"Introduction: The present study was focused on the statistical optimization of growth parameters for enhancing the Microbially Induced Calcite Precipitation (MICP) using ureolytic yeast strain.Materials and Methods: Thirteen yeast strains were tested for the synthesis of urease enzyme by phenol-hypochlorite assay and were further evaluated for calcite precipitation test. The growth parameters were optimized using the best ureolytic strain by Box-Behnken Design (BBD) and the extracted MICP was characterized through instrumental analysis.Results: Among thirteen yeast strains, Candida tropicalis NN4, Spathospora sp. NN04, Wickerhamomyces anomalus VIT-NN01 and Candida dubliniensis NN03 showed positive results for the synthesis of urease enzyme. Spathospora sp. was found to be the most potent strain for MICP. A significant enhancement in MICP by Spathospora sp. was observed under optimized conditions viz. A-urea concentration (80.0 g/L), B-calcium chloride (45.0 g/L), C-pH (9.0) and D-inoculum dosage (8%, v/v). The actual value (34.4±0.12 g/L) was in agreement with predicted value (34.7±0.01 g/L) with the R2 value (0.9900), confirming the validity of the model. The FTIR of MICP confirmed the fundamental bands of CO3 stretching and bending vibrations, observed at 1394.23 and 874.85 cm-1. The Scanning Electron Microscope (SEM) images of biomotar revealed aggregated polymorphs of MICP interconnected with yeast mycelium and spores. The Energy Dispersive X-Ray Spectrometer (EDX) analysis indicated the presence of calcite in the biomotar. A remarkable improvement in the compressive strength (28 to 44 MPa) and morphological changes were observed in biocement mortar as compared to cement mortar.Conclusions: This result is the first report on the implementation of ureolytic Spathospora towards the application of biocementation through MICP using BBD.","PeriodicalId":14945,"journal":{"name":"Journal of Applied Biotechnology Reports","volume":"8 1","pages":"303-311"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process Optimization of Microbially Induced Calcite Precipitation by Ureolytic Yeast Spathospora sp. NN04 using Box-Behnken Design: A Novel Approach towards Biocementation\",\"authors\":\"Nupur Ojha, Pooja Aich, N. Das\",\"doi\":\"10.30491/JABR.2020.245335.1278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: The present study was focused on the statistical optimization of growth parameters for enhancing the Microbially Induced Calcite Precipitation (MICP) using ureolytic yeast strain.Materials and Methods: Thirteen yeast strains were tested for the synthesis of urease enzyme by phenol-hypochlorite assay and were further evaluated for calcite precipitation test. The growth parameters were optimized using the best ureolytic strain by Box-Behnken Design (BBD) and the extracted MICP was characterized through instrumental analysis.Results: Among thirteen yeast strains, Candida tropicalis NN4, Spathospora sp. NN04, Wickerhamomyces anomalus VIT-NN01 and Candida dubliniensis NN03 showed positive results for the synthesis of urease enzyme. Spathospora sp. was found to be the most potent strain for MICP. A significant enhancement in MICP by Spathospora sp. was observed under optimized conditions viz. A-urea concentration (80.0 g/L), B-calcium chloride (45.0 g/L), C-pH (9.0) and D-inoculum dosage (8%, v/v). The actual value (34.4±0.12 g/L) was in agreement with predicted value (34.7±0.01 g/L) with the R2 value (0.9900), confirming the validity of the model. The FTIR of MICP confirmed the fundamental bands of CO3 stretching and bending vibrations, observed at 1394.23 and 874.85 cm-1. The Scanning Electron Microscope (SEM) images of biomotar revealed aggregated polymorphs of MICP interconnected with yeast mycelium and spores. The Energy Dispersive X-Ray Spectrometer (EDX) analysis indicated the presence of calcite in the biomotar. A remarkable improvement in the compressive strength (28 to 44 MPa) and morphological changes were observed in biocement mortar as compared to cement mortar.Conclusions: This result is the first report on the implementation of ureolytic Spathospora towards the application of biocementation through MICP using BBD.\",\"PeriodicalId\":14945,\"journal\":{\"name\":\"Journal of Applied Biotechnology Reports\",\"volume\":\"8 1\",\"pages\":\"303-311\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biotechnology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30491/JABR.2020.245335.1278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30491/JABR.2020.245335.1278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Process Optimization of Microbially Induced Calcite Precipitation by Ureolytic Yeast Spathospora sp. NN04 using Box-Behnken Design: A Novel Approach towards Biocementation
Introduction: The present study was focused on the statistical optimization of growth parameters for enhancing the Microbially Induced Calcite Precipitation (MICP) using ureolytic yeast strain.Materials and Methods: Thirteen yeast strains were tested for the synthesis of urease enzyme by phenol-hypochlorite assay and were further evaluated for calcite precipitation test. The growth parameters were optimized using the best ureolytic strain by Box-Behnken Design (BBD) and the extracted MICP was characterized through instrumental analysis.Results: Among thirteen yeast strains, Candida tropicalis NN4, Spathospora sp. NN04, Wickerhamomyces anomalus VIT-NN01 and Candida dubliniensis NN03 showed positive results for the synthesis of urease enzyme. Spathospora sp. was found to be the most potent strain for MICP. A significant enhancement in MICP by Spathospora sp. was observed under optimized conditions viz. A-urea concentration (80.0 g/L), B-calcium chloride (45.0 g/L), C-pH (9.0) and D-inoculum dosage (8%, v/v). The actual value (34.4±0.12 g/L) was in agreement with predicted value (34.7±0.01 g/L) with the R2 value (0.9900), confirming the validity of the model. The FTIR of MICP confirmed the fundamental bands of CO3 stretching and bending vibrations, observed at 1394.23 and 874.85 cm-1. The Scanning Electron Microscope (SEM) images of biomotar revealed aggregated polymorphs of MICP interconnected with yeast mycelium and spores. The Energy Dispersive X-Ray Spectrometer (EDX) analysis indicated the presence of calcite in the biomotar. A remarkable improvement in the compressive strength (28 to 44 MPa) and morphological changes were observed in biocement mortar as compared to cement mortar.Conclusions: This result is the first report on the implementation of ureolytic Spathospora towards the application of biocementation through MICP using BBD.
期刊介绍:
The Journal of Applied Biotechnology Reports (JABR) publishes papers describing experimental work relating to all fundamental issues of biotechnology including: Cell Biology, Genetics, Microbiology, Immunology, Molecular Biology, Biochemistry, Embryology, Immunogenetics, Cell and Tissue Culture, Molecular Ecology, Genetic Engineering and Biological Engineering, Bioremediation and Biodegradation, Bioinformatics, Biotechnology Regulations, Pharmacogenomics, Gene Therapy, Plant, Animal, Microbial and Environmental Biotechnology, Nanobiotechnology, Medical Biotechnology, Biosafety, Biosecurity, Bioenergy, Biomass, Biomaterials and Biobased Chemicals and Enzymes. Journal of Applied Biotechnology Reports promotes a special emphasis on: -Improvement methods in biotechnology -Optimization process for high production in fermentor systems -Protein and enzyme engineering -Antibody engineering and monoclonal antibody -Molecular farming -Bioremediation -Immobilizing methods -biocatalysis