{"title":"Lyman-α森林重子声学振荡模型的选择","authors":"Fulvio Melia","doi":"10.1209/0295-5075/acf60c","DOIUrl":null,"url":null,"abstract":"The recent release of the final, complete survey of Lyman-α baryonic acoustic oscillation measurements provides the most significant and accurate data base for studying cosmic geometry at an effective redshift , which is inaccessible to other sources. In this paper, we use these data to select among four distinct cosmologies: Planck ΛCDM, the universe, the Milne universe and the Einstein-de Sitter universe. Given the breadth and depth of the Lyman-α study, this BAO measurement alone provides a strong model comparison, complementary to previous studies that combined Lyman-α data with measurements at lower redshifts. Though both approaches are useful, the latter tends to dilute the disparity between model predictions and the observations. We therefore examine how the models compare to each other strictly based on the BAO scale measured in the Lyman-α forest and background quasars. We find that the Milne universe and the Einstein-de Sitter universe are strongly ruled out by these data. There is also strong evidence disfavoring the standard model. The Lyman-α measurements are completely consistent with the cosmic geometry predicted by . As such, evidence continues to grow that the zero active mass condition from general relativity ought to be an essential ingredient in ΛCDM.","PeriodicalId":11738,"journal":{"name":"EPL","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model selection with baryonic acoustic oscillations in the Lyman-α forest\",\"authors\":\"Fulvio Melia\",\"doi\":\"10.1209/0295-5075/acf60c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent release of the final, complete survey of Lyman-α baryonic acoustic oscillation measurements provides the most significant and accurate data base for studying cosmic geometry at an effective redshift , which is inaccessible to other sources. In this paper, we use these data to select among four distinct cosmologies: Planck ΛCDM, the universe, the Milne universe and the Einstein-de Sitter universe. Given the breadth and depth of the Lyman-α study, this BAO measurement alone provides a strong model comparison, complementary to previous studies that combined Lyman-α data with measurements at lower redshifts. Though both approaches are useful, the latter tends to dilute the disparity between model predictions and the observations. We therefore examine how the models compare to each other strictly based on the BAO scale measured in the Lyman-α forest and background quasars. We find that the Milne universe and the Einstein-de Sitter universe are strongly ruled out by these data. There is also strong evidence disfavoring the standard model. The Lyman-α measurements are completely consistent with the cosmic geometry predicted by . As such, evidence continues to grow that the zero active mass condition from general relativity ought to be an essential ingredient in ΛCDM.\",\"PeriodicalId\":11738,\"journal\":{\"name\":\"EPL\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPL\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1209/0295-5075/acf60c\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1209/0295-5075/acf60c","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Model selection with baryonic acoustic oscillations in the Lyman-α forest
The recent release of the final, complete survey of Lyman-α baryonic acoustic oscillation measurements provides the most significant and accurate data base for studying cosmic geometry at an effective redshift , which is inaccessible to other sources. In this paper, we use these data to select among four distinct cosmologies: Planck ΛCDM, the universe, the Milne universe and the Einstein-de Sitter universe. Given the breadth and depth of the Lyman-α study, this BAO measurement alone provides a strong model comparison, complementary to previous studies that combined Lyman-α data with measurements at lower redshifts. Though both approaches are useful, the latter tends to dilute the disparity between model predictions and the observations. We therefore examine how the models compare to each other strictly based on the BAO scale measured in the Lyman-α forest and background quasars. We find that the Milne universe and the Einstein-de Sitter universe are strongly ruled out by these data. There is also strong evidence disfavoring the standard model. The Lyman-α measurements are completely consistent with the cosmic geometry predicted by . As such, evidence continues to grow that the zero active mass condition from general relativity ought to be an essential ingredient in ΛCDM.
期刊介绍:
General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology.
Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate).
EPL also publishes Comments on Letters previously published in the Journal.