结合立体视觉的非结构化道路场景消失点检测研究

Q3 Engineering
Xing Chen, Wenhai Zhang, L. Yang, Xunjia Zheng
{"title":"结合立体视觉的非结构化道路场景消失点检测研究","authors":"Xing Chen, Wenhai Zhang, L. Yang, Xunjia Zheng","doi":"10.1051/jnwpu/20224061431","DOIUrl":null,"url":null,"abstract":"消失点检测是基于视觉的无人车辆自主导航的重要组成部分。由于非结构化场景存在缺乏清晰的道路线和复杂的背景干扰等问题, 现有检测方法普遍存在精度低、计算时间长的缺点。因此, 针对非结构化道路特点, 提出了一种结合立体视觉的消失点检测方法。采用双目立体视觉技术获得道路图像的视差图, 使用广度优先算法快速估计出道路图像的背景区域; 设计四方向五尺度的Gabor滤波器组估计像素响应幅值, 并通过幅值校正减少检测误差; 结合背景区域设计一系列投票点选择策略, 来剔除背景区域的干扰, 提高算法精度; 采用动态调整候选点范围策略, 减少消失点的搜索范围, 从而提高算法效率; 设计了一种角度优先投票函数, 将在投票空间中获得最大票数的候选点视为消失点。结果表明, 改进的方法在复杂背景干扰的场景下具有较好的鲁棒性, 在检测速度和检测精度上都有显著提升。","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on vanishing point detection of unstructured road scene combined with stereo vision\",\"authors\":\"Xing Chen, Wenhai Zhang, L. Yang, Xunjia Zheng\",\"doi\":\"10.1051/jnwpu/20224061431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"消失点检测是基于视觉的无人车辆自主导航的重要组成部分。由于非结构化场景存在缺乏清晰的道路线和复杂的背景干扰等问题, 现有检测方法普遍存在精度低、计算时间长的缺点。因此, 针对非结构化道路特点, 提出了一种结合立体视觉的消失点检测方法。采用双目立体视觉技术获得道路图像的视差图, 使用广度优先算法快速估计出道路图像的背景区域; 设计四方向五尺度的Gabor滤波器组估计像素响应幅值, 并通过幅值校正减少检测误差; 结合背景区域设计一系列投票点选择策略, 来剔除背景区域的干扰, 提高算法精度; 采用动态调整候选点范围策略, 减少消失点的搜索范围, 从而提高算法效率; 设计了一种角度优先投票函数, 将在投票空间中获得最大票数的候选点视为消失点。结果表明, 改进的方法在复杂背景干扰的场景下具有较好的鲁棒性, 在检测速度和检测精度上都有显著提升。\",\"PeriodicalId\":39691,\"journal\":{\"name\":\"西北工业大学学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"西北工业大学学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1051/jnwpu/20224061431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"西北工业大学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/jnwpu/20224061431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

Vanishing point detection is an important component of vision based autonomous navigation for unmanned vehicles. Due to the lack of clear road lines and complex background interference in unstructured scenes, existing detection methods generally have the drawbacks of low accuracy and long calculation time. Therefore, a vanishing point detection method combining stereo vision is proposed based on the characteristics of unstructured roads. Using binocular stereo vision technology to obtain disparity maps of road images, and using breadth first algorithm to quickly estimate the background area of the road image; Design a four sided five scale Gabor filter bank to estimate the pixel response amplitude, and reduce detection errors through amplitude correction; Design a series of voting point selection strategies based on the background area to eliminate interference in the background area and improve algorithm accuracy; Adopting a strategy of dynamically adjusting the range of candidate points to reduce the search range of vanishing points, thereby improving algorithm efficiency; We have designed an angle first voting function that treats candidate points that obtain the maximum number of votes in the voting space as vanishing points. The results show that the improved method has good robustness in complex background interference scenarios, and has significant improvements in detection speed and accuracy.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on vanishing point detection of unstructured road scene combined with stereo vision
消失点检测是基于视觉的无人车辆自主导航的重要组成部分。由于非结构化场景存在缺乏清晰的道路线和复杂的背景干扰等问题, 现有检测方法普遍存在精度低、计算时间长的缺点。因此, 针对非结构化道路特点, 提出了一种结合立体视觉的消失点检测方法。采用双目立体视觉技术获得道路图像的视差图, 使用广度优先算法快速估计出道路图像的背景区域; 设计四方向五尺度的Gabor滤波器组估计像素响应幅值, 并通过幅值校正减少检测误差; 结合背景区域设计一系列投票点选择策略, 来剔除背景区域的干扰, 提高算法精度; 采用动态调整候选点范围策略, 减少消失点的搜索范围, 从而提高算法效率; 设计了一种角度优先投票函数, 将在投票空间中获得最大票数的候选点视为消失点。结果表明, 改进的方法在复杂背景干扰的场景下具有较好的鲁棒性, 在检测速度和检测精度上都有显著提升。
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
西北工业大学学报
西北工业大学学报 Engineering-Engineering (all)
CiteScore
1.30
自引率
0.00%
发文量
6201
审稿时长
12 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信