随机拉伸正方形晶格上渗流的相变

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Emy, Anchis, ugusto, eixeira
{"title":"随机拉伸正方形晶格上渗流的相变","authors":"Emy, Anchis, ugusto, eixeira","doi":"10.1214/22-aap1887","DOIUrl":null,"url":null,"abstract":"Let { ξ i } i ≥ 1 be a sequence of i.i.d. positive random variables. Starting from the usual square lattice replace each horizontal edge that links a site in i -th vertical column to another in the ( i + 1) -th vertical column by an edge having length ξ i . Then declare independently each edge e in the resulting lattice open with probability p e = p | e | where p ∈ [0 , 1] and | e | is the length of e . We relate the occurrence of a nontrivial phase transition for this model to moment properties of ξ 1 . More precisely, we prove that the model undergoes a nontrivial phase transition when E ( ξ η 1 ) < ∞ , for some η > 1 . On the other hand, when E ( ξ 1 ) = ∞ , percolation never occurs for p < 1 . We also show that the probability of the one-arm event decays no faster than a polynomial in an open interval of parameters p close to the critical point.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Phase transition for percolation on a randomly stretched square lattice\",\"authors\":\"Emy, Anchis, ugusto, eixeira\",\"doi\":\"10.1214/22-aap1887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let { ξ i } i ≥ 1 be a sequence of i.i.d. positive random variables. Starting from the usual square lattice replace each horizontal edge that links a site in i -th vertical column to another in the ( i + 1) -th vertical column by an edge having length ξ i . Then declare independently each edge e in the resulting lattice open with probability p e = p | e | where p ∈ [0 , 1] and | e | is the length of e . We relate the occurrence of a nontrivial phase transition for this model to moment properties of ξ 1 . More precisely, we prove that the model undergoes a nontrivial phase transition when E ( ξ η 1 ) < ∞ , for some η > 1 . On the other hand, when E ( ξ 1 ) = ∞ , percolation never occurs for p < 1 . We also show that the probability of the one-arm event decays no faster than a polynomial in an open interval of parameters p close to the critical point.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1887\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1887","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

设{ξi}i≥1为i.i.d.正随机变量序列。从通常的正方形网格开始,用长度为ξi的边替换连接第i个垂直列中的一个站点与第(i+1)个垂直列的另一个站点的每个水平边。然后独立地声明结果格中的每个边e是开的,概率为p e=p|e|,其中p∈[0,1],|e|是e的长度。我们将该模型的非平凡相变的发生与ξ1的矩性质联系起来。更准确地说,我们证明了当E(ξη1)<∞时,对于一些η>1,模型经历了一个非平凡的相变。另一方面,当E(ξ1)=∞时,当p<1时,不发生渗流。我们还证明了单臂事件的概率衰减不比参数p的开区间中接近临界点的多项式快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase transition for percolation on a randomly stretched square lattice
Let { ξ i } i ≥ 1 be a sequence of i.i.d. positive random variables. Starting from the usual square lattice replace each horizontal edge that links a site in i -th vertical column to another in the ( i + 1) -th vertical column by an edge having length ξ i . Then declare independently each edge e in the resulting lattice open with probability p e = p | e | where p ∈ [0 , 1] and | e | is the length of e . We relate the occurrence of a nontrivial phase transition for this model to moment properties of ξ 1 . More precisely, we prove that the model undergoes a nontrivial phase transition when E ( ξ η 1 ) < ∞ , for some η > 1 . On the other hand, when E ( ξ 1 ) = ∞ , percolation never occurs for p < 1 . We also show that the probability of the one-arm event decays no faster than a polynomial in an open interval of parameters p close to the critical point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信