随机拉伸正方形晶格上渗流的相变

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Emy, Anchis, ugusto, eixeira
{"title":"随机拉伸正方形晶格上渗流的相变","authors":"Emy, Anchis, ugusto, eixeira","doi":"10.1214/22-aap1887","DOIUrl":null,"url":null,"abstract":"Let { ξ i } i ≥ 1 be a sequence of i.i.d. positive random variables. Starting from the usual square lattice replace each horizontal edge that links a site in i -th vertical column to another in the ( i + 1) -th vertical column by an edge having length ξ i . Then declare independently each edge e in the resulting lattice open with probability p e = p | e | where p ∈ [0 , 1] and | e | is the length of e . We relate the occurrence of a nontrivial phase transition for this model to moment properties of ξ 1 . More precisely, we prove that the model undergoes a nontrivial phase transition when E ( ξ η 1 ) < ∞ , for some η > 1 . On the other hand, when E ( ξ 1 ) = ∞ , percolation never occurs for p < 1 . We also show that the probability of the one-arm event decays no faster than a polynomial in an open interval of parameters p close to the critical point.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Phase transition for percolation on a randomly stretched square lattice\",\"authors\":\"Emy, Anchis, ugusto, eixeira\",\"doi\":\"10.1214/22-aap1887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let { ξ i } i ≥ 1 be a sequence of i.i.d. positive random variables. Starting from the usual square lattice replace each horizontal edge that links a site in i -th vertical column to another in the ( i + 1) -th vertical column by an edge having length ξ i . Then declare independently each edge e in the resulting lattice open with probability p e = p | e | where p ∈ [0 , 1] and | e | is the length of e . We relate the occurrence of a nontrivial phase transition for this model to moment properties of ξ 1 . More precisely, we prove that the model undergoes a nontrivial phase transition when E ( ξ η 1 ) < ∞ , for some η > 1 . On the other hand, when E ( ξ 1 ) = ∞ , percolation never occurs for p < 1 . We also show that the probability of the one-arm event decays no faster than a polynomial in an open interval of parameters p close to the critical point.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1887\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1887","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

设{ξi}i≥1为i.i.d.正随机变量序列。从通常的正方形网格开始,用长度为ξi的边替换连接第i个垂直列中的一个站点与第(i+1)个垂直列的另一个站点的每个水平边。然后独立地声明结果格中的每个边e是开的,概率为p e=p|e|,其中p∈[0,1],|e|是e的长度。我们将该模型的非平凡相变的发生与ξ1的矩性质联系起来。更准确地说,我们证明了当E(ξη1)<∞时,对于一些η>1,模型经历了一个非平凡的相变。另一方面,当E(ξ1)=∞时,当p<1时,不发生渗流。我们还证明了单臂事件的概率衰减不比参数p的开区间中接近临界点的多项式快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase transition for percolation on a randomly stretched square lattice
Let { ξ i } i ≥ 1 be a sequence of i.i.d. positive random variables. Starting from the usual square lattice replace each horizontal edge that links a site in i -th vertical column to another in the ( i + 1) -th vertical column by an edge having length ξ i . Then declare independently each edge e in the resulting lattice open with probability p e = p | e | where p ∈ [0 , 1] and | e | is the length of e . We relate the occurrence of a nontrivial phase transition for this model to moment properties of ξ 1 . More precisely, we prove that the model undergoes a nontrivial phase transition when E ( ξ η 1 ) < ∞ , for some η > 1 . On the other hand, when E ( ξ 1 ) = ∞ , percolation never occurs for p < 1 . We also show that the probability of the one-arm event decays no faster than a polynomial in an open interval of parameters p close to the critical point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信