横跨西北大西洋的大西洋比目鱼的空间生态学:气候变化时代的一个恢复物种

IF 6.4 1区 农林科学 Q1 FISHERIES
N. Shackell, J. Fisher, Cornelia E. den Heyer, D. Hennen, A. Seitz, A. Le Bris, D. Robert, M. Kersula, S. Cadrin, R. McBride, Christopher H. McGuire, T. Kess, K. Ransier, Chang Liu, Andrew Czich, K. Frank
{"title":"横跨西北大西洋的大西洋比目鱼的空间生态学:气候变化时代的一个恢复物种","authors":"N. Shackell, J. Fisher, Cornelia E. den Heyer, D. Hennen, A. Seitz, A. Le Bris, D. Robert, M. Kersula, S. Cadrin, R. McBride, Christopher H. McGuire, T. Kess, K. Ransier, Chang Liu, Andrew Czich, K. Frank","doi":"10.1080/23308249.2021.1948502","DOIUrl":null,"url":null,"abstract":"Abstract Interactions between spatial dynamics and stock structure in marine fishes have largely focused on stocks in decline; stock structure is rarely re-visited for expanding species. Here, the spatial ecology of Atlantic halibut (Hippoglossus hippoglossus L.), managed as four stocks in the Northwest Atlantic, is reviewed. Halibut collapsed under high exploitation in the mid-19th century, but the Canadian fisheries value has increased seven-fold since the early 2000s. Atlantic halibut’s thermal habitat has increased due to warming, possibly contributing to its expansion. Genomic evidence differentiates two populations in the four management units, whereas there is non-genetic spatial structure within each of the stock boundaries. There are different core juvenile areas and a diversity of spawning migration patterns influenced by timing, fish size, maturity state, and distance between summer-feeding and over-wintering habitats. From tagging studies, multiple estimates of median distance at recapture (⁓3-90 km) are much less than the spatial domain of each stock. Growth rates are faster in the warmer south, as predicted by growing degree day. The current perspective of Atlantic halibut spatial structure is that there are two distinct populations, and within each, there are subpopulations composed of multiple migratory contingents. The level of mixing on common spawning grounds both among and within subpopulations is only partly understood.","PeriodicalId":21183,"journal":{"name":"Reviews in Fisheries Science & Aquaculture","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23308249.2021.1948502","citationCount":"12","resultStr":"{\"title\":\"Spatial Ecology of Atlantic Halibut across the Northwest Atlantic: A Recovering Species in an Era of Climate Change\",\"authors\":\"N. Shackell, J. Fisher, Cornelia E. den Heyer, D. Hennen, A. Seitz, A. Le Bris, D. Robert, M. Kersula, S. Cadrin, R. McBride, Christopher H. McGuire, T. Kess, K. Ransier, Chang Liu, Andrew Czich, K. Frank\",\"doi\":\"10.1080/23308249.2021.1948502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Interactions between spatial dynamics and stock structure in marine fishes have largely focused on stocks in decline; stock structure is rarely re-visited for expanding species. Here, the spatial ecology of Atlantic halibut (Hippoglossus hippoglossus L.), managed as four stocks in the Northwest Atlantic, is reviewed. Halibut collapsed under high exploitation in the mid-19th century, but the Canadian fisheries value has increased seven-fold since the early 2000s. Atlantic halibut’s thermal habitat has increased due to warming, possibly contributing to its expansion. Genomic evidence differentiates two populations in the four management units, whereas there is non-genetic spatial structure within each of the stock boundaries. There are different core juvenile areas and a diversity of spawning migration patterns influenced by timing, fish size, maturity state, and distance between summer-feeding and over-wintering habitats. From tagging studies, multiple estimates of median distance at recapture (⁓3-90 km) are much less than the spatial domain of each stock. Growth rates are faster in the warmer south, as predicted by growing degree day. The current perspective of Atlantic halibut spatial structure is that there are two distinct populations, and within each, there are subpopulations composed of multiple migratory contingents. The level of mixing on common spawning grounds both among and within subpopulations is only partly understood.\",\"PeriodicalId\":21183,\"journal\":{\"name\":\"Reviews in Fisheries Science & Aquaculture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2021-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23308249.2021.1948502\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Fisheries Science & Aquaculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/23308249.2021.1948502\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Fisheries Science & Aquaculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/23308249.2021.1948502","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 12

摘要

摘要海洋鱼类的空间动力学和种群结构之间的相互作用主要集中在种群减少上;种群结构很少被扩展物种重新造访。本文对大西洋大比目鱼(Hippoglossus Hippoglossus L.)的空间生态学进行了综述。哈利布特在19世纪中期因高度开发而崩溃,但自21世纪初以来,加拿大的渔业价值增长了7倍。由于气候变暖,大西洋大比目鱼的热栖息地增加了,这可能是其扩张的原因之一。基因组证据区分了四个管理单元中的两个种群,而在每个种群边界内都有非遗传空间结构。有不同的核心幼鱼区,产卵迁徙模式的多样性受到时间、鱼类大小、成熟状态以及夏季觅食和越冬栖息地之间距离的影响。根据标记研究,重新捕获时中值距离的多重估计(⁓3-90 km)远小于每个股票的空间域。正如生长度日预测的那样,温暖的南方的增长速度更快。目前对大西洋大比目鱼空间结构的看法是,大比目鱼有两个不同的种群,每个种群中都有由多个迁徙特遣队组成的亚种群。在亚种群之间和内部的共同产卵场上的混合程度仅部分了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial Ecology of Atlantic Halibut across the Northwest Atlantic: A Recovering Species in an Era of Climate Change
Abstract Interactions between spatial dynamics and stock structure in marine fishes have largely focused on stocks in decline; stock structure is rarely re-visited for expanding species. Here, the spatial ecology of Atlantic halibut (Hippoglossus hippoglossus L.), managed as four stocks in the Northwest Atlantic, is reviewed. Halibut collapsed under high exploitation in the mid-19th century, but the Canadian fisheries value has increased seven-fold since the early 2000s. Atlantic halibut’s thermal habitat has increased due to warming, possibly contributing to its expansion. Genomic evidence differentiates two populations in the four management units, whereas there is non-genetic spatial structure within each of the stock boundaries. There are different core juvenile areas and a diversity of spawning migration patterns influenced by timing, fish size, maturity state, and distance between summer-feeding and over-wintering habitats. From tagging studies, multiple estimates of median distance at recapture (⁓3-90 km) are much less than the spatial domain of each stock. Growth rates are faster in the warmer south, as predicted by growing degree day. The current perspective of Atlantic halibut spatial structure is that there are two distinct populations, and within each, there are subpopulations composed of multiple migratory contingents. The level of mixing on common spawning grounds both among and within subpopulations is only partly understood.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.20
自引率
0.90%
发文量
19
期刊介绍: Reviews in Fisheries Science & Aquaculture provides an important forum for the publication of up-to-date reviews covering a broad range of subject areas including management, aquaculture, taxonomy, behavior, stock identification, genetics, nutrition, and physiology. Issues concerning finfish and aquatic invertebrates prized for their economic or recreational importance, their value as indicators of environmental health, or their natural beauty are addressed. An important resource that keeps you apprised of the latest changes in the field, each issue of Reviews in Fisheries Science & Aquaculture presents useful information to fisheries and aquaculture scientists in academia, state and federal natural resources agencies, and the private sector.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信