基于幅值的HRTF变化听觉预测参数模型

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
S. Doma, Cosima A. Ermert, J. Fels
{"title":"基于幅值的HRTF变化听觉预测参数模型","authors":"S. Doma, Cosima A. Ermert, J. Fels","doi":"10.17743/jaes.2022.0080","DOIUrl":null,"url":null,"abstract":"This work proposes a parametric model for just noticeable differences of unilateral differences in head-related transfer functions (HRTFs). For seven generic magnitude-based distance metrics, common trends in their response to inter-individual and intra-individual HRTF differences are analyzed, identifying metric subgroups with pseudo-orthogonal behavior. On the basis of three representative metrics, a three-alternative forced-choice experiment is conducted, and the acquired discrimination probabilities are set in relation with distance metrics via different modeling approaches. A linear model, with coefficients based on principal component analysis and three distance metrics as input, yields the best performance, compared to a simple multi-linear regression approach or to principal component analysis–based models of higher complexity.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Magnitude-Based Parametric Model Predicting the Audibility of HRTF Variation\",\"authors\":\"S. Doma, Cosima A. Ermert, J. Fels\",\"doi\":\"10.17743/jaes.2022.0080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a parametric model for just noticeable differences of unilateral differences in head-related transfer functions (HRTFs). For seven generic magnitude-based distance metrics, common trends in their response to inter-individual and intra-individual HRTF differences are analyzed, identifying metric subgroups with pseudo-orthogonal behavior. On the basis of three representative metrics, a three-alternative forced-choice experiment is conducted, and the acquired discrimination probabilities are set in relation with distance metrics via different modeling approaches. A linear model, with coefficients based on principal component analysis and three distance metrics as input, yields the best performance, compared to a simple multi-linear regression approach or to principal component analysis–based models of higher complexity.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.17743/jaes.2022.0080\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17743/jaes.2022.0080","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了一个参数模型,仅用于头部相关传递函数(HRTF)中单侧差异的显著差异。对于七个通用的基于幅度的距离度量,分析了它们对个体间和个体内HRTF差异的响应的共同趋势,确定了具有伪正交行为的度量子群。在三个具有代表性的度量的基础上,进行了三种替代强迫选择实验,并通过不同的建模方法将获得的判别概率设置为与距离度量相关。与简单的多元线性回归方法或更复杂的基于主成分分析的模型相比,以基于主成分的系数和三个距离度量作为输入的线性模型产生了最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Magnitude-Based Parametric Model Predicting the Audibility of HRTF Variation
This work proposes a parametric model for just noticeable differences of unilateral differences in head-related transfer functions (HRTFs). For seven generic magnitude-based distance metrics, common trends in their response to inter-individual and intra-individual HRTF differences are analyzed, identifying metric subgroups with pseudo-orthogonal behavior. On the basis of three representative metrics, a three-alternative forced-choice experiment is conducted, and the acquired discrimination probabilities are set in relation with distance metrics via different modeling approaches. A linear model, with coefficients based on principal component analysis and three distance metrics as input, yields the best performance, compared to a simple multi-linear regression approach or to principal component analysis–based models of higher complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信