{"title":"可调螺距螺旋桨顺桨操纵时主轴转矩的数值研究","authors":"A. Yurtseven, Kaan Aktay","doi":"10.21278/brod74205","DOIUrl":null,"url":null,"abstract":"Present paper studies the variation of the blade spindle torque in a controllable pitch propeller (CPP) during the feathering maneuver, which is one of the rare but most challenging propeller maneuvers in CPP operation. The knowledge of the spindle torque under different operating conditions is one of the key features for the CPP controller unit design. The aim of this study is determining the forces needed to be governed to control the blade motion of a CPP converted from a fixed pitch propeller and the scale effect on these forces. So as to obtain a realistic numerical setup, the time-dependent superposed motion of the main rotation of the propeller and the rotation of each blade around its axis is modeled using a hybrid overset/sliding mesh technique. The spindle torque values were calculated during the dynamical variation of the blade pitch in feathering maneuver, and a novel expression is recommended to non-dimensionalize the predicted spindle torque. The result revealed that the required torque values to rotate each blade during the propeller maneuver is rising up to a critical pitch angle. Further increment of the pitch angle results in lower spindle torque values. Furthermore, this critical pitch angle is inversely proportional to the propeller loading.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The numerical investigation of spindle torque for a controllable pitch propeller in feathering maneuver\",\"authors\":\"A. Yurtseven, Kaan Aktay\",\"doi\":\"10.21278/brod74205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Present paper studies the variation of the blade spindle torque in a controllable pitch propeller (CPP) during the feathering maneuver, which is one of the rare but most challenging propeller maneuvers in CPP operation. The knowledge of the spindle torque under different operating conditions is one of the key features for the CPP controller unit design. The aim of this study is determining the forces needed to be governed to control the blade motion of a CPP converted from a fixed pitch propeller and the scale effect on these forces. So as to obtain a realistic numerical setup, the time-dependent superposed motion of the main rotation of the propeller and the rotation of each blade around its axis is modeled using a hybrid overset/sliding mesh technique. The spindle torque values were calculated during the dynamical variation of the blade pitch in feathering maneuver, and a novel expression is recommended to non-dimensionalize the predicted spindle torque. The result revealed that the required torque values to rotate each blade during the propeller maneuver is rising up to a critical pitch angle. Further increment of the pitch angle results in lower spindle torque values. Furthermore, this critical pitch angle is inversely proportional to the propeller loading.\",\"PeriodicalId\":55594,\"journal\":{\"name\":\"Brodogradnja\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brodogradnja\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21278/brod74205\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod74205","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
The numerical investigation of spindle torque for a controllable pitch propeller in feathering maneuver
Present paper studies the variation of the blade spindle torque in a controllable pitch propeller (CPP) during the feathering maneuver, which is one of the rare but most challenging propeller maneuvers in CPP operation. The knowledge of the spindle torque under different operating conditions is one of the key features for the CPP controller unit design. The aim of this study is determining the forces needed to be governed to control the blade motion of a CPP converted from a fixed pitch propeller and the scale effect on these forces. So as to obtain a realistic numerical setup, the time-dependent superposed motion of the main rotation of the propeller and the rotation of each blade around its axis is modeled using a hybrid overset/sliding mesh technique. The spindle torque values were calculated during the dynamical variation of the blade pitch in feathering maneuver, and a novel expression is recommended to non-dimensionalize the predicted spindle torque. The result revealed that the required torque values to rotate each blade during the propeller maneuver is rising up to a critical pitch angle. Further increment of the pitch angle results in lower spindle torque values. Furthermore, this critical pitch angle is inversely proportional to the propeller loading.
期刊介绍:
The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.