{"title":"非自治SIR模型中行为和治疗的最优控制","authors":"Samhita Das, P. Das, P. Das","doi":"10.1504/IJDSDE.2021.10037984","DOIUrl":null,"url":null,"abstract":"In this paper, we have considered a nonautonomous susceptible, infected, removed (SIR) model with saturation incidence rate for disease transmission. The global dynamical properties like permanence and global stability of the system as well as extinction of disease are analytically and numerically studied. The impact of behavioural patterns of individuals on disease control is validated along with possible applications. Furthermore, Pontryagin's Maximum Principle is used to characterise optimal level of the two controls, treatment and awareness level. Our objective is to minimise the infected population as well as the cost of applied control. The controls at optimal level are found to achieve different levels of impact on infection. It is observed that the combined impact of treatment and awareness exhibits more effective result in disease control compared to their single application. Based on observation, the strategy regarding the implementation of awareness and treatment is suggested.","PeriodicalId":43101,"journal":{"name":"International Journal of Dynamical Systems and Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimal control of behaviour and treatment in a nonautonomous SIR model\",\"authors\":\"Samhita Das, P. Das, P. Das\",\"doi\":\"10.1504/IJDSDE.2021.10037984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have considered a nonautonomous susceptible, infected, removed (SIR) model with saturation incidence rate for disease transmission. The global dynamical properties like permanence and global stability of the system as well as extinction of disease are analytically and numerically studied. The impact of behavioural patterns of individuals on disease control is validated along with possible applications. Furthermore, Pontryagin's Maximum Principle is used to characterise optimal level of the two controls, treatment and awareness level. Our objective is to minimise the infected population as well as the cost of applied control. The controls at optimal level are found to achieve different levels of impact on infection. It is observed that the combined impact of treatment and awareness exhibits more effective result in disease control compared to their single application. Based on observation, the strategy regarding the implementation of awareness and treatment is suggested.\",\"PeriodicalId\":43101,\"journal\":{\"name\":\"International Journal of Dynamical Systems and Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Dynamical Systems and Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJDSDE.2021.10037984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Dynamical Systems and Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJDSDE.2021.10037984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Optimal control of behaviour and treatment in a nonautonomous SIR model
In this paper, we have considered a nonautonomous susceptible, infected, removed (SIR) model with saturation incidence rate for disease transmission. The global dynamical properties like permanence and global stability of the system as well as extinction of disease are analytically and numerically studied. The impact of behavioural patterns of individuals on disease control is validated along with possible applications. Furthermore, Pontryagin's Maximum Principle is used to characterise optimal level of the two controls, treatment and awareness level. Our objective is to minimise the infected population as well as the cost of applied control. The controls at optimal level are found to achieve different levels of impact on infection. It is observed that the combined impact of treatment and awareness exhibits more effective result in disease control compared to their single application. Based on observation, the strategy regarding the implementation of awareness and treatment is suggested.
期刊介绍:
IJDSDE is a quarterly international journal that publishes original research papers of high quality in all areas related to dynamical systems and differential equations and their applications in biology, economics, engineering, physics, and other related areas of science. Manuscripts concerned with the development and application innovative mathematical tools and methods from dynamical systems and differential equations, are encouraged.