Kampenba市(刚果民主共和国卢本巴希)土壤岩土工程特征的耦合判别统计分析和人工智能

Kavula Ngoy Elysée, Kasongo wa Mutombo Portance, L. Sow, Ngoy Biyukaleza Bilez, Kavula Mwenze Corneille, Tshibwabwa Kasongo Obed
{"title":"Kampenba市(刚果民主共和国卢本巴希)土壤岩土工程特征的耦合判别统计分析和人工智能","authors":"Kavula Ngoy Elysée, Kasongo wa Mutombo Portance, L. Sow, Ngoy Biyukaleza Bilez, Kavula Mwenze Corneille, Tshibwabwa Kasongo Obed","doi":"10.4236/gm.2020.103003","DOIUrl":null,"url":null,"abstract":"This study focuses on the determination of physical and mechanical characteristics based on in vitro tests, by using field samples for the Kampemba urban area in the city of Lubumbashi. At the end of this study, we identified the soils according to their parameters, and established the geotechnical classification by determining their bearing capacity by the group index method using from the identification tests carried out. By using the AASHTO classification method (American Association for State Highway Transportation Official), the results obtained after our studies revealed five classes of soil: A-2, A-4, A-5, A-6, A-7 in a general way, and particularly eight subgroups of soil: A-2-4, A-2-6, A-2-7, A-4, A-5, A-6, A-7-5 and A-7-6 for the concerned area. The latter has given statistical analysis and deep learning based on multi-layer perceptron, the global values of the physical parameters. It’s about: 31.77% ± 1.05% for the limit of liquidity; 18.71% ± 0.76% for the plastic limit; 13.06% ± 0.79% for the plasticity index; 83.00% ± 3.33% for passing of 2 mm sieve; 76.22% ± 3.2% for passing of 400 μm sieve; 89.07% ± 2.99% for passing of 4.75 mm sieve; 70.62% ± 2.39% passing of 80 μm sieve; 1.66 ± 0.61 for the consistency index; −0.67 ± 0.62 for the liquidity index and 8 ± 1 for the group index.","PeriodicalId":67978,"journal":{"name":"地质材料(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Coupling Discriminating Statistical Analysis and Artificial Intelligence for Geotechnical Characterization of the Kampemba’s Municipality Soils (Lubumbashi, DR Congo)\",\"authors\":\"Kavula Ngoy Elysée, Kasongo wa Mutombo Portance, L. Sow, Ngoy Biyukaleza Bilez, Kavula Mwenze Corneille, Tshibwabwa Kasongo Obed\",\"doi\":\"10.4236/gm.2020.103003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on the determination of physical and mechanical characteristics based on in vitro tests, by using field samples for the Kampemba urban area in the city of Lubumbashi. At the end of this study, we identified the soils according to their parameters, and established the geotechnical classification by determining their bearing capacity by the group index method using from the identification tests carried out. By using the AASHTO classification method (American Association for State Highway Transportation Official), the results obtained after our studies revealed five classes of soil: A-2, A-4, A-5, A-6, A-7 in a general way, and particularly eight subgroups of soil: A-2-4, A-2-6, A-2-7, A-4, A-5, A-6, A-7-5 and A-7-6 for the concerned area. The latter has given statistical analysis and deep learning based on multi-layer perceptron, the global values of the physical parameters. It’s about: 31.77% ± 1.05% for the limit of liquidity; 18.71% ± 0.76% for the plastic limit; 13.06% ± 0.79% for the plasticity index; 83.00% ± 3.33% for passing of 2 mm sieve; 76.22% ± 3.2% for passing of 400 μm sieve; 89.07% ± 2.99% for passing of 4.75 mm sieve; 70.62% ± 2.39% passing of 80 μm sieve; 1.66 ± 0.61 for the consistency index; −0.67 ± 0.62 for the liquidity index and 8 ± 1 for the group index.\",\"PeriodicalId\":67978,\"journal\":{\"name\":\"地质材料(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"地质材料(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/gm.2020.103003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"地质材料(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/gm.2020.103003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究的重点是通过使用卢本巴希市Kampenba市区的现场样本,在体外测试的基础上确定物理和机械特性。在本研究的最后,我们根据土壤的参数对其进行了鉴定,并根据所进行的鉴定试验,通过分组指数法确定其承载力,建立了岩土工程分类。通过使用AASHTO分类方法(美国国家公路运输协会官员),我们研究后获得的结果揭示了五类土壤:A-2、A-4、A-5、A-6、A-7,特别是八个土壤亚组:A-2-4、A-2-6、A-2-7、A-4,A-5、A-6、A-7-5和A-7-6。后者给出了基于多层感知器的统计分析和深度学习的物理参数的全局值。流动性上限约为:31.77%±1.05%;塑性极限为18.71%±0.76%;塑性指数为13.06%±0.79%;通过2mm筛网时为83.00%±3.33%;400μm筛通过率为76.22%±3.2%;4.75mm筛网通过率为89.07%±2.99%;80μm筛通过率为70.62%±2.39%;稠度指数为1.66±0.61;−流动性指数为0.67±0.62,团体指数为8±1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupling Discriminating Statistical Analysis and Artificial Intelligence for Geotechnical Characterization of the Kampemba’s Municipality Soils (Lubumbashi, DR Congo)
This study focuses on the determination of physical and mechanical characteristics based on in vitro tests, by using field samples for the Kampemba urban area in the city of Lubumbashi. At the end of this study, we identified the soils according to their parameters, and established the geotechnical classification by determining their bearing capacity by the group index method using from the identification tests carried out. By using the AASHTO classification method (American Association for State Highway Transportation Official), the results obtained after our studies revealed five classes of soil: A-2, A-4, A-5, A-6, A-7 in a general way, and particularly eight subgroups of soil: A-2-4, A-2-6, A-2-7, A-4, A-5, A-6, A-7-5 and A-7-6 for the concerned area. The latter has given statistical analysis and deep learning based on multi-layer perceptron, the global values of the physical parameters. It’s about: 31.77% ± 1.05% for the limit of liquidity; 18.71% ± 0.76% for the plastic limit; 13.06% ± 0.79% for the plasticity index; 83.00% ± 3.33% for passing of 2 mm sieve; 76.22% ± 3.2% for passing of 400 μm sieve; 89.07% ± 2.99% for passing of 4.75 mm sieve; 70.62% ± 2.39% passing of 80 μm sieve; 1.66 ± 0.61 for the consistency index; −0.67 ± 0.62 for the liquidity index and 8 ± 1 for the group index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
60
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信