Gulzhan Yerlan, B. Tyussyupova, S. Tazhibayeva, K. Musabekov, N. G. Balabushevich, A. Kokanbayev
{"title":"胰岛素在可生物降解聚合物中的包封","authors":"Gulzhan Yerlan, B. Tyussyupova, S. Tazhibayeva, K. Musabekov, N. G. Balabushevich, A. Kokanbayev","doi":"10.18321/ectj1479","DOIUrl":null,"url":null,"abstract":" Encapsulation of insulin into alginate particles was carried out by the method of ionotropic gelation. To protect against the acidic, alkaline environment of the gastrointestinal tract, alginate particles were coated with gelatin. The optimal concentration of the solution of the crosslinking agent ‒ CaCl2 was determined during the optimization of the particle preparation method. The mechanism of interaction between alginate and gelatin was investigated using FTIR spectroscopy, FTIR spectra data confirm the formation of a polyelectrolyte complex between alginate an-d gelatin. The roughness and morphology of samples were determined by atomic force microscopy. The swelling of particles under simulated pH conditions of various parts of the human gastrointestinal tract was studied. The release of insulin from the particles was evaluated using UV spectroscopy, at pH 6.86; 9.18 the release of insulin reached 50%; 83% relatively.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Encapsulation of Insulin in Biodegradable Polymers\",\"authors\":\"Gulzhan Yerlan, B. Tyussyupova, S. Tazhibayeva, K. Musabekov, N. G. Balabushevich, A. Kokanbayev\",\"doi\":\"10.18321/ectj1479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" Encapsulation of insulin into alginate particles was carried out by the method of ionotropic gelation. To protect against the acidic, alkaline environment of the gastrointestinal tract, alginate particles were coated with gelatin. The optimal concentration of the solution of the crosslinking agent ‒ CaCl2 was determined during the optimization of the particle preparation method. The mechanism of interaction between alginate and gelatin was investigated using FTIR spectroscopy, FTIR spectra data confirm the formation of a polyelectrolyte complex between alginate an-d gelatin. The roughness and morphology of samples were determined by atomic force microscopy. The swelling of particles under simulated pH conditions of various parts of the human gastrointestinal tract was studied. The release of insulin from the particles was evaluated using UV spectroscopy, at pH 6.86; 9.18 the release of insulin reached 50%; 83% relatively.\",\"PeriodicalId\":11795,\"journal\":{\"name\":\"Eurasian Chemico-Technological Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Chemico-Technological Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18321/ectj1479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemico-Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/ectj1479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Encapsulation of Insulin in Biodegradable Polymers
Encapsulation of insulin into alginate particles was carried out by the method of ionotropic gelation. To protect against the acidic, alkaline environment of the gastrointestinal tract, alginate particles were coated with gelatin. The optimal concentration of the solution of the crosslinking agent ‒ CaCl2 was determined during the optimization of the particle preparation method. The mechanism of interaction between alginate and gelatin was investigated using FTIR spectroscopy, FTIR spectra data confirm the formation of a polyelectrolyte complex between alginate an-d gelatin. The roughness and morphology of samples were determined by atomic force microscopy. The swelling of particles under simulated pH conditions of various parts of the human gastrointestinal tract was studied. The release of insulin from the particles was evaluated using UV spectroscopy, at pH 6.86; 9.18 the release of insulin reached 50%; 83% relatively.
期刊介绍:
The journal is designed for publication of experimental and theoretical investigation results in the field of chemistry and chemical technology. Among priority fields that emphasized by chemical science are as follows: advanced materials and chemical technologies, current issues of organic synthesis and chemistry of natural compounds, physical chemistry, chemical physics, electro-photo-radiative-plasma chemistry, colloids, nanotechnologies, catalysis and surface-active materials, polymers, biochemistry.