Yumeng Guo, Meng Zhou, J. Sheng, Yujia Yuan, Guangyuan Yuan, Wen‐Hao Zhang, Wenming Bai
{"title":"内蒙古温带典型草原地上净初级生产力不受磷的限制","authors":"Yumeng Guo, Meng Zhou, J. Sheng, Yujia Yuan, Guangyuan Yuan, Wen‐Hao Zhang, Wenming Bai","doi":"10.1093/jpe/rtac085","DOIUrl":null,"url":null,"abstract":"\n Phosphorus (P) is an essential element for plant growth, however, whether the aboveground net primary productivity (ANPP) of typical steppe was limited by P remains obscure. To detect the effects of P addition on primary productivity and aboveground biomass of different plant functional groups both under ambient and N addition conditions, ANPP and aboveground biomass of grasses and forbs were measured from 2016 to 2020 on a 16-year N and P addition experiment platform in a temperate typical steppe in Inner Mongolia. The soil available N and P concentration were also determined to test the relationship between ANPP and the availability of soil nutrient. We found that P addition under ambient condition had no significant effect on ANPP and the aboveground biomass of grasses and forbs. Whereas, under N addition, P addition significantly increased ANPP and the aboveground biomass of forbs. Furthermore, soil available N and P concentration were increased significantly by N and P addition, respectively. Moreover, there was no significant correlation between ANPP and soil available P concentration, while, ANPP was positively correlated with soil available N concentration. These results suggested that P was not the key factor limiting the primary productivity of the temperate typical steppe in Inner Mongolia. However, under N addition, P addition can promote ANPP and alter the community composition. These findings provide valuable information for the management of the temperate typical steppe.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aboveground net primary productivity was not limited by phosphorus in a temperate typical steppe in Inner Mongolia\",\"authors\":\"Yumeng Guo, Meng Zhou, J. Sheng, Yujia Yuan, Guangyuan Yuan, Wen‐Hao Zhang, Wenming Bai\",\"doi\":\"10.1093/jpe/rtac085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Phosphorus (P) is an essential element for plant growth, however, whether the aboveground net primary productivity (ANPP) of typical steppe was limited by P remains obscure. To detect the effects of P addition on primary productivity and aboveground biomass of different plant functional groups both under ambient and N addition conditions, ANPP and aboveground biomass of grasses and forbs were measured from 2016 to 2020 on a 16-year N and P addition experiment platform in a temperate typical steppe in Inner Mongolia. The soil available N and P concentration were also determined to test the relationship between ANPP and the availability of soil nutrient. We found that P addition under ambient condition had no significant effect on ANPP and the aboveground biomass of grasses and forbs. Whereas, under N addition, P addition significantly increased ANPP and the aboveground biomass of forbs. Furthermore, soil available N and P concentration were increased significantly by N and P addition, respectively. Moreover, there was no significant correlation between ANPP and soil available P concentration, while, ANPP was positively correlated with soil available N concentration. These results suggested that P was not the key factor limiting the primary productivity of the temperate typical steppe in Inner Mongolia. However, under N addition, P addition can promote ANPP and alter the community composition. These findings provide valuable information for the management of the temperate typical steppe.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jpe/rtac085\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jpe/rtac085","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Aboveground net primary productivity was not limited by phosphorus in a temperate typical steppe in Inner Mongolia
Phosphorus (P) is an essential element for plant growth, however, whether the aboveground net primary productivity (ANPP) of typical steppe was limited by P remains obscure. To detect the effects of P addition on primary productivity and aboveground biomass of different plant functional groups both under ambient and N addition conditions, ANPP and aboveground biomass of grasses and forbs were measured from 2016 to 2020 on a 16-year N and P addition experiment platform in a temperate typical steppe in Inner Mongolia. The soil available N and P concentration were also determined to test the relationship between ANPP and the availability of soil nutrient. We found that P addition under ambient condition had no significant effect on ANPP and the aboveground biomass of grasses and forbs. Whereas, under N addition, P addition significantly increased ANPP and the aboveground biomass of forbs. Furthermore, soil available N and P concentration were increased significantly by N and P addition, respectively. Moreover, there was no significant correlation between ANPP and soil available P concentration, while, ANPP was positively correlated with soil available N concentration. These results suggested that P was not the key factor limiting the primary productivity of the temperate typical steppe in Inner Mongolia. However, under N addition, P addition can promote ANPP and alter the community composition. These findings provide valuable information for the management of the temperate typical steppe.