Yumeng Guo, Meng Zhou, J. Sheng, Yujia Yuan, Guangyuan Yuan, Wen‐Hao Zhang, Wenming Bai
{"title":"内蒙古温带典型草原地上净初级生产力不受磷的限制","authors":"Yumeng Guo, Meng Zhou, J. Sheng, Yujia Yuan, Guangyuan Yuan, Wen‐Hao Zhang, Wenming Bai","doi":"10.1093/jpe/rtac085","DOIUrl":null,"url":null,"abstract":"\n Phosphorus (P) is an essential element for plant growth, however, whether the aboveground net primary productivity (ANPP) of typical steppe was limited by P remains obscure. To detect the effects of P addition on primary productivity and aboveground biomass of different plant functional groups both under ambient and N addition conditions, ANPP and aboveground biomass of grasses and forbs were measured from 2016 to 2020 on a 16-year N and P addition experiment platform in a temperate typical steppe in Inner Mongolia. The soil available N and P concentration were also determined to test the relationship between ANPP and the availability of soil nutrient. We found that P addition under ambient condition had no significant effect on ANPP and the aboveground biomass of grasses and forbs. Whereas, under N addition, P addition significantly increased ANPP and the aboveground biomass of forbs. Furthermore, soil available N and P concentration were increased significantly by N and P addition, respectively. Moreover, there was no significant correlation between ANPP and soil available P concentration, while, ANPP was positively correlated with soil available N concentration. These results suggested that P was not the key factor limiting the primary productivity of the temperate typical steppe in Inner Mongolia. However, under N addition, P addition can promote ANPP and alter the community composition. These findings provide valuable information for the management of the temperate typical steppe.","PeriodicalId":50085,"journal":{"name":"Journal of Plant Ecology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aboveground net primary productivity was not limited by phosphorus in a temperate typical steppe in Inner Mongolia\",\"authors\":\"Yumeng Guo, Meng Zhou, J. Sheng, Yujia Yuan, Guangyuan Yuan, Wen‐Hao Zhang, Wenming Bai\",\"doi\":\"10.1093/jpe/rtac085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Phosphorus (P) is an essential element for plant growth, however, whether the aboveground net primary productivity (ANPP) of typical steppe was limited by P remains obscure. To detect the effects of P addition on primary productivity and aboveground biomass of different plant functional groups both under ambient and N addition conditions, ANPP and aboveground biomass of grasses and forbs were measured from 2016 to 2020 on a 16-year N and P addition experiment platform in a temperate typical steppe in Inner Mongolia. The soil available N and P concentration were also determined to test the relationship between ANPP and the availability of soil nutrient. We found that P addition under ambient condition had no significant effect on ANPP and the aboveground biomass of grasses and forbs. Whereas, under N addition, P addition significantly increased ANPP and the aboveground biomass of forbs. Furthermore, soil available N and P concentration were increased significantly by N and P addition, respectively. Moreover, there was no significant correlation between ANPP and soil available P concentration, while, ANPP was positively correlated with soil available N concentration. These results suggested that P was not the key factor limiting the primary productivity of the temperate typical steppe in Inner Mongolia. However, under N addition, P addition can promote ANPP and alter the community composition. These findings provide valuable information for the management of the temperate typical steppe.\",\"PeriodicalId\":50085,\"journal\":{\"name\":\"Journal of Plant Ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jpe/rtac085\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jpe/rtac085","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Aboveground net primary productivity was not limited by phosphorus in a temperate typical steppe in Inner Mongolia
Phosphorus (P) is an essential element for plant growth, however, whether the aboveground net primary productivity (ANPP) of typical steppe was limited by P remains obscure. To detect the effects of P addition on primary productivity and aboveground biomass of different plant functional groups both under ambient and N addition conditions, ANPP and aboveground biomass of grasses and forbs were measured from 2016 to 2020 on a 16-year N and P addition experiment platform in a temperate typical steppe in Inner Mongolia. The soil available N and P concentration were also determined to test the relationship between ANPP and the availability of soil nutrient. We found that P addition under ambient condition had no significant effect on ANPP and the aboveground biomass of grasses and forbs. Whereas, under N addition, P addition significantly increased ANPP and the aboveground biomass of forbs. Furthermore, soil available N and P concentration were increased significantly by N and P addition, respectively. Moreover, there was no significant correlation between ANPP and soil available P concentration, while, ANPP was positively correlated with soil available N concentration. These results suggested that P was not the key factor limiting the primary productivity of the temperate typical steppe in Inner Mongolia. However, under N addition, P addition can promote ANPP and alter the community composition. These findings provide valuable information for the management of the temperate typical steppe.
期刊介绍:
Journal of Plant Ecology (JPE) serves as an important medium for ecologists to present research findings and discuss challenging issues in the broad field of plants and their interactions with biotic and abiotic environment. The JPE will cover all aspects of plant ecology, including plant ecophysiology, population ecology, community ecology, ecosystem ecology and landscape ecology as well as conservation ecology, evolutionary ecology, and theoretical ecology.