基于三角剖分和可见性搜索的最优区域多边形化

Q2 Mathematics
Julien Lepagnot, L. Moalic, Dominique Schmitt
{"title":"基于三角剖分和可见性搜索的最优区域多边形化","authors":"Julien Lepagnot, L. Moalic, Dominique Schmitt","doi":"10.1145/3503953","DOIUrl":null,"url":null,"abstract":"The aim of the “CG:SHOP Challenge 2019” was to generate optimal area polygonizations of a planar point set. We describe here the algorithm that won the challenge. It is a two-phase algorithm based on the node-insertion move technique, which comes from the TSP. In the first phase, we use constrained triangulations to check efficiently the simplicity of the generated polygonizations. In the second phase, we perform visibility searches to be able to generate a wider variety of polygonizations. In both phases, the simulated annealing metaheuristic is implemented to approach the optimum.","PeriodicalId":53707,"journal":{"name":"Journal of Experimental Algorithmics","volume":" ","pages":"1 - 23"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Area Polygonization by Triangulation and Visibility Search\",\"authors\":\"Julien Lepagnot, L. Moalic, Dominique Schmitt\",\"doi\":\"10.1145/3503953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the “CG:SHOP Challenge 2019” was to generate optimal area polygonizations of a planar point set. We describe here the algorithm that won the challenge. It is a two-phase algorithm based on the node-insertion move technique, which comes from the TSP. In the first phase, we use constrained triangulations to check efficiently the simplicity of the generated polygonizations. In the second phase, we perform visibility searches to be able to generate a wider variety of polygonizations. In both phases, the simulated annealing metaheuristic is implemented to approach the optimum.\",\"PeriodicalId\":53707,\"journal\":{\"name\":\"Journal of Experimental Algorithmics\",\"volume\":\" \",\"pages\":\"1 - 23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Algorithmics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3503953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Algorithmics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

“2019 CG:SHOP挑战赛”的目的是生成平面点集的最佳面积多边形。我们在这里描述赢得挑战的算法。它是一种基于TSP的节点插入-移动技术的两阶段算法。在第一阶段,我们使用约束三角来有效地检查生成的多边形的简单性。在第二阶段,我们执行可见性搜索,以便能够生成更广泛的多边形。在这两个阶段中,模拟退火元启发式算法都被实现以接近最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Area Polygonization by Triangulation and Visibility Search
The aim of the “CG:SHOP Challenge 2019” was to generate optimal area polygonizations of a planar point set. We describe here the algorithm that won the challenge. It is a two-phase algorithm based on the node-insertion move technique, which comes from the TSP. In the first phase, we use constrained triangulations to check efficiently the simplicity of the generated polygonizations. In the second phase, we perform visibility searches to be able to generate a wider variety of polygonizations. In both phases, the simulated annealing metaheuristic is implemented to approach the optimum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Algorithmics
Journal of Experimental Algorithmics Mathematics-Theoretical Computer Science
CiteScore
3.10
自引率
0.00%
发文量
29
期刊介绍: The ACM JEA is a high-quality, refereed, archival journal devoted to the study of discrete algorithms and data structures through a combination of experimentation and classical analysis and design techniques. It focuses on the following areas in algorithms and data structures: ■combinatorial optimization ■computational biology ■computational geometry ■graph manipulation ■graphics ■heuristics ■network design ■parallel processing ■routing and scheduling ■searching and sorting ■VLSI design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信