AISI D3间歇车削过程参数的统计分析、建模及多目标优化

IF 1.1 Q4 ENGINEERING, MECHANICAL
Fethi Khelfaoui, M. A. Yallese, N. Ouelaa, S. Chihaoui, S. Belhadi
{"title":"AISI D3间歇车削过程参数的统计分析、建模及多目标优化","authors":"Fethi Khelfaoui, M. A. Yallese, N. Ouelaa, S. Chihaoui, S. Belhadi","doi":"10.15282/jmes.17.2.2023.8.0752","DOIUrl":null,"url":null,"abstract":"Intermittent machining is characterized by its complex and irregular context. This intermittency causes machining to occur under difficult conditions that greatly influence the technological performance parameters. The aim of the present work is to evaluate the effects of input parameters, cutting speed, Vc, depth of cut, ap, tool nose radius, r and feed rate, f, on surface roughness, Ra, tangential cutting force, Fz, motor power consumption, Pm, cutting power, Pc and material removal rate (MRR), during intermittent turning (IT) of AISI D3 tool steel. Machining was performed with a triple CVD coated carbide tool (AI2O3/TiC/TiCN) by adopting a Taguchi L9 (3^4) experimental design. The ANOVA and RSM methods were used to analyze the effects of cutting factors on the outputs parameters resulting in statistical prediction models. In addition, a multi-objective optimization of the cutting conditions exploiting the desirability function (DF) was done according to four cases of relative importance corresponding to different industrial contexts. Furthermore, the grey relational analysis (GRA) method was applied and compared with the DF method. The results show that the optimal regime found by the DF method, (r =1.6mm, Vc= 240 m/min, f = 0.084 mm/rev and ap = 0.64 mm), favors Ra and MRR. On the other hand, for the GRA method, the combination of (r = 0.4 mm, Vc = 240 m/min f = 0.08 mm/rev and ap = 0.3 mm) favors the minimization of Fz, Pm and Pc. This work presents an originality because the results found are very useful in the field of optimization for a better control of the process IT.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical analysis, modeling and multi-objective optimization of parameters intermittent turning process of AISI D3\",\"authors\":\"Fethi Khelfaoui, M. A. Yallese, N. Ouelaa, S. Chihaoui, S. Belhadi\",\"doi\":\"10.15282/jmes.17.2.2023.8.0752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intermittent machining is characterized by its complex and irregular context. This intermittency causes machining to occur under difficult conditions that greatly influence the technological performance parameters. The aim of the present work is to evaluate the effects of input parameters, cutting speed, Vc, depth of cut, ap, tool nose radius, r and feed rate, f, on surface roughness, Ra, tangential cutting force, Fz, motor power consumption, Pm, cutting power, Pc and material removal rate (MRR), during intermittent turning (IT) of AISI D3 tool steel. Machining was performed with a triple CVD coated carbide tool (AI2O3/TiC/TiCN) by adopting a Taguchi L9 (3^4) experimental design. The ANOVA and RSM methods were used to analyze the effects of cutting factors on the outputs parameters resulting in statistical prediction models. In addition, a multi-objective optimization of the cutting conditions exploiting the desirability function (DF) was done according to four cases of relative importance corresponding to different industrial contexts. Furthermore, the grey relational analysis (GRA) method was applied and compared with the DF method. The results show that the optimal regime found by the DF method, (r =1.6mm, Vc= 240 m/min, f = 0.084 mm/rev and ap = 0.64 mm), favors Ra and MRR. On the other hand, for the GRA method, the combination of (r = 0.4 mm, Vc = 240 m/min f = 0.08 mm/rev and ap = 0.3 mm) favors the minimization of Fz, Pm and Pc. This work presents an originality because the results found are very useful in the field of optimization for a better control of the process IT.\",\"PeriodicalId\":16166,\"journal\":{\"name\":\"Journal of Mechanical Engineering and Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/jmes.17.2.2023.8.0752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.17.2.2023.8.0752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

间歇加工的特点是其复杂和不规则的环境。这种间歇性会导致加工在困难的条件下进行,这会极大地影响技术性能参数。本工作的目的是评估在AISI D3工具钢的间歇车削(IT)过程中,输入参数,切削速度Vc,切削深度ap,刀尖半径r和进给率f对表面粗糙度Ra,切向切削力Fz,电机功耗Pm,切削功率Pc和材料去除率MRR的影响。采用田口L9(3^4)实验设计,用三层CVD涂层硬质合金刀具(AI2O3/TiC/TiCN)进行了机械加工。ANOVA和RSM方法用于分析切割因素对输出参数的影响,从而建立统计预测模型。此外,根据不同工业背景下相对重要的四个案例,利用期望函数(DF)对切割条件进行了多目标优化。此外,还应用了灰色关联分析(GRA)方法,并与DF方法进行了比较。结果表明,DF方法找到的最佳方案(r=1.6mm,Vc=240m/min,f=0.084mm/rev,ap=0.64mm)有利于Ra和MRR。另一方面,对于GRA方法,(r=0.4 mm,Vc=240 m/min f=0.08 mm/rev和ap=0.3 mm)的组合有利于Fz、Pm和Pc的最小化。这项工作具有独创性,因为发现的结果在优化领域非常有用,可以更好地控制过程IT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical analysis, modeling and multi-objective optimization of parameters intermittent turning process of AISI D3
Intermittent machining is characterized by its complex and irregular context. This intermittency causes machining to occur under difficult conditions that greatly influence the technological performance parameters. The aim of the present work is to evaluate the effects of input parameters, cutting speed, Vc, depth of cut, ap, tool nose radius, r and feed rate, f, on surface roughness, Ra, tangential cutting force, Fz, motor power consumption, Pm, cutting power, Pc and material removal rate (MRR), during intermittent turning (IT) of AISI D3 tool steel. Machining was performed with a triple CVD coated carbide tool (AI2O3/TiC/TiCN) by adopting a Taguchi L9 (3^4) experimental design. The ANOVA and RSM methods were used to analyze the effects of cutting factors on the outputs parameters resulting in statistical prediction models. In addition, a multi-objective optimization of the cutting conditions exploiting the desirability function (DF) was done according to four cases of relative importance corresponding to different industrial contexts. Furthermore, the grey relational analysis (GRA) method was applied and compared with the DF method. The results show that the optimal regime found by the DF method, (r =1.6mm, Vc= 240 m/min, f = 0.084 mm/rev and ap = 0.64 mm), favors Ra and MRR. On the other hand, for the GRA method, the combination of (r = 0.4 mm, Vc = 240 m/min f = 0.08 mm/rev and ap = 0.3 mm) favors the minimization of Fz, Pm and Pc. This work presents an originality because the results found are very useful in the field of optimization for a better control of the process IT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
42
审稿时长
20 weeks
期刊介绍: The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信