Fethi Khelfaoui, M. A. Yallese, N. Ouelaa, S. Chihaoui, S. Belhadi
{"title":"AISI D3间歇车削过程参数的统计分析、建模及多目标优化","authors":"Fethi Khelfaoui, M. A. Yallese, N. Ouelaa, S. Chihaoui, S. Belhadi","doi":"10.15282/jmes.17.2.2023.8.0752","DOIUrl":null,"url":null,"abstract":"Intermittent machining is characterized by its complex and irregular context. This intermittency causes machining to occur under difficult conditions that greatly influence the technological performance parameters. The aim of the present work is to evaluate the effects of input parameters, cutting speed, Vc, depth of cut, ap, tool nose radius, r and feed rate, f, on surface roughness, Ra, tangential cutting force, Fz, motor power consumption, Pm, cutting power, Pc and material removal rate (MRR), during intermittent turning (IT) of AISI D3 tool steel. Machining was performed with a triple CVD coated carbide tool (AI2O3/TiC/TiCN) by adopting a Taguchi L9 (3^4) experimental design. The ANOVA and RSM methods were used to analyze the effects of cutting factors on the outputs parameters resulting in statistical prediction models. In addition, a multi-objective optimization of the cutting conditions exploiting the desirability function (DF) was done according to four cases of relative importance corresponding to different industrial contexts. Furthermore, the grey relational analysis (GRA) method was applied and compared with the DF method. The results show that the optimal regime found by the DF method, (r =1.6mm, Vc= 240 m/min, f = 0.084 mm/rev and ap = 0.64 mm), favors Ra and MRR. On the other hand, for the GRA method, the combination of (r = 0.4 mm, Vc = 240 m/min f = 0.08 mm/rev and ap = 0.3 mm) favors the minimization of Fz, Pm and Pc. This work presents an originality because the results found are very useful in the field of optimization for a better control of the process IT.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical analysis, modeling and multi-objective optimization of parameters intermittent turning process of AISI D3\",\"authors\":\"Fethi Khelfaoui, M. A. Yallese, N. Ouelaa, S. Chihaoui, S. Belhadi\",\"doi\":\"10.15282/jmes.17.2.2023.8.0752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intermittent machining is characterized by its complex and irregular context. This intermittency causes machining to occur under difficult conditions that greatly influence the technological performance parameters. The aim of the present work is to evaluate the effects of input parameters, cutting speed, Vc, depth of cut, ap, tool nose radius, r and feed rate, f, on surface roughness, Ra, tangential cutting force, Fz, motor power consumption, Pm, cutting power, Pc and material removal rate (MRR), during intermittent turning (IT) of AISI D3 tool steel. Machining was performed with a triple CVD coated carbide tool (AI2O3/TiC/TiCN) by adopting a Taguchi L9 (3^4) experimental design. The ANOVA and RSM methods were used to analyze the effects of cutting factors on the outputs parameters resulting in statistical prediction models. In addition, a multi-objective optimization of the cutting conditions exploiting the desirability function (DF) was done according to four cases of relative importance corresponding to different industrial contexts. Furthermore, the grey relational analysis (GRA) method was applied and compared with the DF method. The results show that the optimal regime found by the DF method, (r =1.6mm, Vc= 240 m/min, f = 0.084 mm/rev and ap = 0.64 mm), favors Ra and MRR. On the other hand, for the GRA method, the combination of (r = 0.4 mm, Vc = 240 m/min f = 0.08 mm/rev and ap = 0.3 mm) favors the minimization of Fz, Pm and Pc. This work presents an originality because the results found are very useful in the field of optimization for a better control of the process IT.\",\"PeriodicalId\":16166,\"journal\":{\"name\":\"Journal of Mechanical Engineering and Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/jmes.17.2.2023.8.0752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.17.2.2023.8.0752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Statistical analysis, modeling and multi-objective optimization of parameters intermittent turning process of AISI D3
Intermittent machining is characterized by its complex and irregular context. This intermittency causes machining to occur under difficult conditions that greatly influence the technological performance parameters. The aim of the present work is to evaluate the effects of input parameters, cutting speed, Vc, depth of cut, ap, tool nose radius, r and feed rate, f, on surface roughness, Ra, tangential cutting force, Fz, motor power consumption, Pm, cutting power, Pc and material removal rate (MRR), during intermittent turning (IT) of AISI D3 tool steel. Machining was performed with a triple CVD coated carbide tool (AI2O3/TiC/TiCN) by adopting a Taguchi L9 (3^4) experimental design. The ANOVA and RSM methods were used to analyze the effects of cutting factors on the outputs parameters resulting in statistical prediction models. In addition, a multi-objective optimization of the cutting conditions exploiting the desirability function (DF) was done according to four cases of relative importance corresponding to different industrial contexts. Furthermore, the grey relational analysis (GRA) method was applied and compared with the DF method. The results show that the optimal regime found by the DF method, (r =1.6mm, Vc= 240 m/min, f = 0.084 mm/rev and ap = 0.64 mm), favors Ra and MRR. On the other hand, for the GRA method, the combination of (r = 0.4 mm, Vc = 240 m/min f = 0.08 mm/rev and ap = 0.3 mm) favors the minimization of Fz, Pm and Pc. This work presents an originality because the results found are very useful in the field of optimization for a better control of the process IT.
期刊介绍:
The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.