NACA翼型PIN翅片开放式微通道散热器的热性能

IF 1.5 4区 工程技术 Q3 MECHANICS
Kun-Da Wu, H. Weng
{"title":"NACA翼型PIN翅片开放式微通道散热器的热性能","authors":"Kun-Da Wu, H. Weng","doi":"10.1093/jom/ufad019","DOIUrl":null,"url":null,"abstract":"\n The main purpose of this study is to numerically investigate the effect of pin-fin NACA airfoil on the heat transfer performance of a single open microchannel heat sink with a fixed surface area and a constant wall heat flux. It was found that the helical flow within the microchannel and the converging-diverging flow near the two sides of the microchannel, caused by the periodically arranged NACA airfoil shaped pin fins with an attack angle, dominate the overall heat dissipation ability of the heat sink. The heat dissipation ability can be further improved by increasing the attack angle and Reynolds number. Of the airfoils considered, the symmetrical airfoil NACA0012 in no attack angle case presents the smallest pressure drop, but also the smallest thermal performance value, which can still achieve a Nusselt number improvement of 35.15% and a thermal performance factor (TPF) improvement of 1.38%, compared to the no-fin case. The NACA airfoil effect can be improved when asymmetric airfoils are considered. In terms of overall thermal performance, the NACA6412 would be the best choice. Its percentage increases in the Nusselt number and TPF can be further enhanced by up to 57.62% and 35.43%, respectively, compared to the no-attack-angle NACA0012 case.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Performance of Open Microchannel Heat Sink with NACA Airfoil Shaped PIN Fins\",\"authors\":\"Kun-Da Wu, H. Weng\",\"doi\":\"10.1093/jom/ufad019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The main purpose of this study is to numerically investigate the effect of pin-fin NACA airfoil on the heat transfer performance of a single open microchannel heat sink with a fixed surface area and a constant wall heat flux. It was found that the helical flow within the microchannel and the converging-diverging flow near the two sides of the microchannel, caused by the periodically arranged NACA airfoil shaped pin fins with an attack angle, dominate the overall heat dissipation ability of the heat sink. The heat dissipation ability can be further improved by increasing the attack angle and Reynolds number. Of the airfoils considered, the symmetrical airfoil NACA0012 in no attack angle case presents the smallest pressure drop, but also the smallest thermal performance value, which can still achieve a Nusselt number improvement of 35.15% and a thermal performance factor (TPF) improvement of 1.38%, compared to the no-fin case. The NACA airfoil effect can be improved when asymmetric airfoils are considered. In terms of overall thermal performance, the NACA6412 would be the best choice. Its percentage increases in the Nusselt number and TPF can be further enhanced by up to 57.62% and 35.43%, respectively, compared to the no-attack-angle NACA0012 case.\",\"PeriodicalId\":50136,\"journal\":{\"name\":\"Journal of Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufad019\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufad019","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究的主要目的是数值研究针翅NACA翼型对具有固定表面积和恒定壁面热通量的单个开放微通道散热器传热性能的影响。研究发现,微通道内的螺旋流和微通道两侧附近的会聚-发散流,由具有迎角的周期性布置的NACA翼型销片引起,主导着散热器的整体散热能力。增加攻角和雷诺数可以进一步提高散热能力。在所考虑的翼型中,对称翼型NACA0012在无迎角情况下的压降最小,但热性能值也最小,与无翅片情况相比,其仍能实现35.15%的努塞尔数改进和1.38%的热性能因子(TPF)改进。当考虑不对称翼型时,NACA翼型效果可以得到改善。就整体热性能而言,NACA6412将是最佳选择。与无迎角NACA0012情况相比,其努塞尔数和TPF的百分比增加可分别进一步提高57.62%和35.43%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal Performance of Open Microchannel Heat Sink with NACA Airfoil Shaped PIN Fins
The main purpose of this study is to numerically investigate the effect of pin-fin NACA airfoil on the heat transfer performance of a single open microchannel heat sink with a fixed surface area and a constant wall heat flux. It was found that the helical flow within the microchannel and the converging-diverging flow near the two sides of the microchannel, caused by the periodically arranged NACA airfoil shaped pin fins with an attack angle, dominate the overall heat dissipation ability of the heat sink. The heat dissipation ability can be further improved by increasing the attack angle and Reynolds number. Of the airfoils considered, the symmetrical airfoil NACA0012 in no attack angle case presents the smallest pressure drop, but also the smallest thermal performance value, which can still achieve a Nusselt number improvement of 35.15% and a thermal performance factor (TPF) improvement of 1.38%, compared to the no-fin case. The NACA airfoil effect can be improved when asymmetric airfoils are considered. In terms of overall thermal performance, the NACA6412 would be the best choice. Its percentage increases in the Nusselt number and TPF can be further enhanced by up to 57.62% and 35.43%, respectively, compared to the no-attack-angle NACA0012 case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanics
Journal of Mechanics 物理-力学
CiteScore
3.20
自引率
11.80%
发文量
20
审稿时长
6 months
期刊介绍: The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信